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<A>Abstract 

The most representative form of Cyber-physical systems (CPS) involves wireless 

sensor networks (WSNs) as the main means to interact with physical entities. This 

chapter reviews a number of such WSN-CPS applications and reveals how these 

applications bridge the gap between sensing information in the cyber world and 

diverse entities in the physical world. We divide these applications into five 

categories: smart space systems, healthcare systems, emergency response systems, 

human activity inference, and smart city systems. Smart space systems monitor energy 

usage, temperature, and various other attributes of appliances in an indoor space. 

Healthcare systems assist people to improve physical and emotional well-being 

through automatic sensing and sense-making technologies. Emergency response 

systems search and rescue people as soon as possible in emergency situations such as 

fire outbreaks. Human activity inference systems interpret human intention behind 

sensing information to facilitate human daily activities related to social events, road 

safety, mood detection, interactive games, etc. Smart city systems concentrate on city 

dynamics such as urban environmental monitoring, human mobility, and transport 

information. Our discussion in this chapter is steered from simple to complex systems 

in terms of networking technologies, service ranges, system integration, and human 

engagement. We conclude by discussing important technical components, future 

trends, and open issues in WSN-CPS applications in order to provide readers with 

technical pointers of designing next-generation WSN-CPS applications.  
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<A>12.1 Introduction 
Cyber-physical systems (CPSs) which incorporate wireless communications, 

micro-electromechanical systems (MEMS), intelligent decision making, ubiquitous 

computing, and integration control among diverse entities have been boosting many 

promising applications and open up more opportunities to enrich the interaction 

between the cyber world and the physical world. This chapter will systematically 

review wireless sensor network (WSN)-CPS applications from static towards dynamic 

networks, from small-scale to large-scale service coverage, and from simpler towards 

more complex system interaction, as shown in Figure 12.1, including smart space 

systems, healthcare systems, emergency response systems, human activity inference, 

and smart city systems. Figure 12.2 gives an overview of coarse-grained classification 

based on the three different criteria: network flexibility, service coverage, and human 

engagement. Generally, from network flexibility and service coverage, a more 

dynamic system can operate in a more large-scale area. Moreover, based on the 

degree of human engagement, the former two categories are much simpler and 

emphasize how sensors interact with hardware devices as well as humans, while the 

latter three categories are more complex and focus on how humans interact with a 

whole wireless sensor network, people, and a whole city. The main goal of this 

chapter is to bring important factors and comparison from system-level, service-level, 

and the level of human engagement perspectives to audiences’ attention through 

reviewing some promising WSN-CPS applications. We further discuss some future 

trends and open challenges in future WSN-CPS applications. 
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Figure 12.1 General analysis of WSN-CPS applications 
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Figure 12.2 An overview of WSN-CPS applications 

 

This chapter is organized as follows. Section 12.2 will review three types of smart 

space systems, namely fixture monitoring systems, energy-efficient smart buildings, 

and preference-based smart home. These systems will control the usage of household 

appliances and utilities in a certain intelligent way. The control principles in the first 

two types are to avoid waste of resources, while control principles in the last type  

will depend on personal preference. In Section 12.3, two types of healthcare systems 

will be discussed, namely sensor-assisted sleep-facilitating systems and body motion 

monitoring. The goal of the first type is to improve sleep quality of humans, while the 

second type concentrates on identifying body motion patterns. Section 12.4 studies 

the integration of real-time monitoring and intelligent decision making in emergency 

response systems that provide people with adequate instructions when a dangerous 
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event happens (e.g. a fire). Based on the response diversity and actuation capabilities, 

the existing emergency response systems can be classified into two types, namely 

emergency evacuation systems and search and rescue systems. The former exploits 

pre-deployed sensor networks to guide people to exits, while the latter integrates 

mobile platforms (e.g. robots), opportunistic communications, and parallel computing 

to support diverse actions. Furthermore, as off-the-shelf smartphones equipped with 

various sensors are able to bridge data generated in the cyber world and human 

activities in the physical world, in Section 12.5 we comprehensively study how to 

infer everyday human activities automatically. We will review five types of 

applications including conversation behavior analyzer, mood detection, road safety 

helpers, social activity inference, and virtual–physical games. The first three types 

aim at human behavior inference, while the last two types focus on inferring social 

intention to facilitate human-to-human interaction. Section 12.6 reviews interesting 

applications in a smart city including urban-scale monitoring, urban mobility and 

activity diaries, and intelligent transportation systems. The former two types are 

intended to derive deep knowledge behind sensing data for better understanding of 

city dynamics, while the last type is to provide convenient transportation-related 

information for improving daily commutes. Finally, Section 12.7 discusses 

fine-grained classification based on some technical features and requirements of 

WSN-CPS systems and highlights some important challenges for future systems. 
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<A>12.2 Smart space systems 
This section will review three types of smart space systems based on different 

requirements in a smart environment. The first type is to monitor the statuses of 

appliances, the second type adaptively adjusts the temperature for the energy-saving 

purpose, and the third type is more flexible to fit preferences of multiple users. 

 

<B>12.2.1 Fixture monitoring systems 

Monitoring of electrical and water fixtures in smart space is necessary for conserving 

energy or water cost. Such systems typically comprise three technical stages: (1) 

fixture discovery, (2) fixture recognition, and (3) fixture disaggregation. The fixture 

discovery is to infer the existence of electrical and water fixtures in a house 

automatically. For example, [58] deploys multi-modal sensors including motion 

sensors, light sensors, water meters and power meters in a house so that each fixture 

will have a distinctive usage profile (called ‘fixture profile’) that is a combination of 

multi-modal sensing data instead of single-modal data from a single smart meter or an 

ambient sensor. Since a fixture usually creates a pair of ‘ON’ and ‘OFF’ events, these 

multi-modal sensors and smart meters will collaborate to discover the number of 

fixtures in a house and their fixture profiles through data fusion and matching 

algorithms.  

 

The fixture recognition is to identify when a particular fixture is turned on or off. For 

example, in [16] and [14] a sensor is attached to a wall socket and a hose to monitor 

high-frequency signals in the voltage and water pressure, respectively. In the training 

phase, a user will manually turn on/off each fixture so that the system can learn the 

fixture profiles based on the usage of fixtures. Afterwards, the system will be able to 

recognize those fixtures automatically when they are used. Finally, fixture 

disaggregation is to identify how much energy or water is used by each individual 

fixture. For example, in [29] and [30] a sensor is attached to each electrical (or water) 

fixture to recognize when they are used and also a smart meter is used on the 

electrical (or water) mains to monitor aggregated energy (or water) usage in the entire 

house. Since the total energy (or water) usage in a house is equal to the sum of energy 

(or water) usage of each individual fixture, the system can compute the quantity of 

energy (or water) used by each individual fixture. 

 

<B>12.2.2 Energy-efficient smart buildings 

In the USA, 40–50% of the energy consumption in buildings is used for heating, 

ventilation, and air-conditioning (HVAC) systems. Therefore, optimizing the energy 

usage of HVAC systems in buildings is critical from both cost saving and 
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sustainability perspectives. Two types of intelligent HVAC systems are designed from 

two different perspectives, namely occupancy-based HVAC systems and 

comfort-based HVAC systems. The former utilizes WSNs and ambient Wi-Fi 

infrastructure to facilitate HVAC control and actuation based on the occupancy 

estimation, while the latter takes the feedback from occupants (i.e. the comfort level) 

into consideration for HVAC actuation. 

 

<C>12.2.2.1 Occupancy-based HVAC systems  

Since current HVAC systems operate based on a static schedule regardless of whether 

the room is occupied or empty, the ‘occupancy level’ (i.e. the number of people inside 

a building) is considered by some intelligent HVAC systems to facilitate HVAC 

control in a building [9,  3]. Technically, occupancy estimation can be accomplished 

by either passive infrared (PIR) sensor networks, camera sensor networks, or existing 

Wi-Fi infrastructure. However, some challenges arise in a WSN-based occupancy 

estimation system. The PIR sensors can only provide binary occupancy detection in 

the sense that an occupied room is assumed to be fully occupied and it is hard to know 

how many people inside the room, while the camera sensors can only be deployed 

along public hallways due to privacy issues. Thus, in [9], wireless camera sensors and 

PIR sensors are combined to estimate the number of people in a building so as to 

control the HVAC system optimally. Figure 12.3(a) shows the architecture of the 

occupancy-based HVAC system, where the PIR sensors are deployed on the ceiling to 

detect if a room is occupied and the camera sensors serve as optical turnstiles to 

measure the number of people transiting from an area to another area. Figure 15.3(b) 

shows the workflow of the system, where a fusion algorithm will estimate the current 

occupancy level based on the sensed occupancy from the combined PIR camera 

sensor network. To avoid the control delay due to the thermal ramp-up or -down in a 

room, a prediction model is designed to predict the occupancy level in the near future 

that will be combined with the current occupancy estimated by the fusion algorithm. 

The final estimated occupancy level will be the input to the control scheduler to adjust 

the parameters for HVAC actuation. However, WSN-based solutions rely on costly 

sensor deployment and maintenance. In [3], a system utilizes the existing Wi-Fi 

networks in a building and the smartphones carried by occupants to infer the 

occupancy level for HVAC actuation. In that system, an offline phase will carefully 

mark the boundaries of each Wi-Fi access point while a smartphone may move and 

handover between different Wi-Fi access points. Each room is associated with a 

Wi-Fi access point that can detect user appearance in the room. A user is assumed to 

be in his/her room whenever he/she is detected by the Wi-Fi access point of this room. 

Then, the HVAC actuation server controls the ventilation of a room only when its 
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occupancy changes. 

 

 

Figure 12.3 An overview of the occupancy-based HVAC system 

 

<C>12.2.2.2 Comfort-based HVAC systems  

Some HVAC systems follow a comfort-based industry standard, American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 55 [2], 

to evaluate the comfort index, where multiple parameters such as humidity, 

temperature, and air flow are considered to estimate how warm or cold occupants feel 

on a discrete scale from –3 to 3. Positive values indicate that occupants are warm, 

while negative values indicate that occupants are cold. A zero value indicates that 
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occupants are comfortable. However, instead of interaction with sensors or devices, 

such a system considers the concept of human-as-sensors to adjust temperatures 

adaptively for improving occupant comfort [27, 10]. To collect feedback from 

occupants, a mobile application runs on a user’s smartphone that allows the user to 

give a vote at each feedback period, where votes are valued from –3 to +3 

representing seven different levels of comfort from ‘hot’, ‘warm’, ‘slightly warm’, 

‘neutral’, ‘slightly cool’, ‘cool’, and ‘cold’, respectively. With the collected user 

feedback, the system will learn the correction offsets of temperatures for different 

moments of the day to adjust the HVAC system in a building adaptively. For example, 

a room will need to adjust temperature if the user feedback indicates the room is hot. 

Therefore, the system can adjust temperature adaptively throughout the day according 

to these correction offsets. 

 

<B>12.2.3 Preference-based smart home 

Since a one-size-fits-all control system in a smart home environment is inflexible, [15, 

48] bring the concept of ‘user preference’ into a smart home environment. In [15], 

based on the historical hot water usage of each individual household, a just-in-time 

hot water supply system is designed to determine when the hot water recirculation 

pump should operate. Generally, there is a short period of waiting time before hot 

water comes in a water recirculation system when people want to use hot water in 

their houses. The waiting time may cause a waste of water and can be an annoyance 

to people. The system thus leverages the fact that every household has unique patterns 

of hot water usage at predictable times (e.g. mornings and evenings) to design the hot 

water supply system. In this system, the hot water recirculation pump is connected to 

an electric motor that will generate current when the hot water is used. A sensor is 

responsible for monitoring the current generated by the electric motor. A 

micro-controller is responsible for learning and predicting the timing of hot water 

usage. A naive Bayes learning algorithm is used to construct the prediction model of 

the hot water usage for each household, where the following five features are 

considered to predict whether hot water will be used in the near future: (a) time of day; 

(b) day of the week; and the total amount of time in which hot water was used in the 

past: (c) 15 minutes, (d) 60 minutes, and (e) 120 minutes. 

 

Alternatively, some systems consider an intelligent lighting system. Since the 

illumination requirements for family members are different according to their 

activities, a personalized light control system in a house is designed to meet different 

user preferences [48]. Figure 12.4 shows an example, where user A is reading in G1 

and user B is watching television in G2. In this scenario, both of them require 
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sufficient background illumination from the whole lighting device, and user A 

requires concentrated illumination from the local lighting device for reading. In this 

system, a home is modeled as multiple grids, and each grid deploys a light sensor to 

monitor the light intensity which is provided by the background and concentrated 

lighting. The user requirement of illumination is modeled as a combination of an 

interval of illumination and a coverage range of illumination. If the provided light 

intensity is in the specified interval for all of the grids in the specified coverage range, 

the system considers that the user is satisfied. However, it may not be possible to 

satisfy all users simultaneously. In this case, the proposed algorithms will gradually 

relax illumination intervals of users until all users are satisfied. 

 

 

Figure 12.4 An example of preference-based light control systems 
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<A>12.3 Healthcare systems 
Next, we will review how healthcare systems assist static human sleep and track 

dynamic body motions. 

 

<B>12.3.1 Sensor-assisted sleep-facilitating systems 

People with sleep disorders usually suffer from various symptoms, ranging from 

impaired concentration, memory lapses, loss of energy, fatigue, lethargy, to emotional 

instability. These can lead to even more serious consequences such as social problems 

and traffic accidents. Recently, many research efforts have been invested to improve 

sleep quality, which is one of the important issues in our daily life. Two types of 

sensor-assisted systems are considered to improve sleep quality of individuals, 

namely sleep environment monitoring [28] and sleep disorder detection and treatment 

[72]. The former exploits sensors to better understand the sleep environment, while 

the latter detects sleep disorder events using electrocardiograph (ECG) sensors or 

pulse oximeters and adjusts the sleep posture of the user in an non-invasive way. A 

traditional diagnosis of sleep disorders, polysomnography, is a multi-parametric sleep 

study that is usually conducted in a sleep center to evaluate the sleep quality of 

individuals. However, such an evaluation cannot determine actual environmental 

factors at individuals’ homes. Thus, in [28] a system is designed to help people 

identify when and why their sleep was interrupted at home. To track environmental 

factors associated with sleep quality, including light, sound, temperate, air quality, 

and disruptions by others in the household over time, a sensor suite is deployed on the 

user’s night stand to collect sleep environmental factors. The sensor suite consists of 

several types of sensors including an infrared (IR) camera, two passive infrared (PIR) 

motion detectors, two upward-facing light sensors, a microphone, and a temperature 

sensor. 

 

The system provides expert doctors with patients’ sleep habits and detailed 

environmental factors for further treatment. Patients can also track their data through 

a sleep-monitoring user interface. However, rather than external environmental 

factors, disordered sleep may result from physiological factors such as ‘sleep apnea’ 

(a disturbance in breathing during sleep). Thus, in [72] an auto-adjustable smart 

pillow system is designed which changes the height and shape of a user’s pillow to 

relieve sleep apnea, where a pulse oximeter is used to detect blood oxygen saturation 

(also called SpO2) level for sleep apnea detection in real time. Figure 12.5 shows the 

system architecture of the smart pillow system which is composed of a pulse oximeter, 

a smartphone, and an adjustable pillow. The pulse oximeter is attached to the user’s 

fingertip to monitor the user’s SpO2 continuously while the user is sleeping. The SpO2 



12 
 

and heart rate are collected at a sampling rate of 60 Hz. The data will be transmitted to 

the user’s smartphone through Bluetooth communications. The sleep apnea detection 

algorithm will detect sleep apnea events based on predefined thresholds of SpO2. If 

continuous sleep apnea events are detected for a long period of time, a pillow 

adjustment decision will be made. The smartphone will send out pillow adjustment 

commands to the adjustable pillow through Bluetooth communications. Otherwise, 

the system will not adjust the pillow since the patient can recover from the sporadic 

events automatically. The adjustable pillow consists of five bladders. Through 

extensive experiments on the adjustable pillow, bladder 2 and bladder 5 contribute 

most to the apnea alleviation. Thus the system will adjust the shapes of bladder 2 and 

bladder 5 according to a sequence of combinations of their shapes. 

 

 

Figure 12.5 Architecture of the smart pillow system 

 

2.3.2 Body motion monitoring 

Some healthcare systems focus on identifying injury patterns caused by body motions 

and muscle usage through body sensor networks. The potential applications may help 

athletes reduce their risk of injury and facilitate home rehabilitation remotely [44, 61]. 

In [44], wearable sensors and a sink are attached on a user’s muscles for muscular 

activity recognition and motion tracking, as shown in Figure 12.6. Each sensor node 

consists of a three-axis accelerometer, gyroscope, and magnetometer. The sensing 
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data is sent to the sink and then to the back-end server. The sink is responsible for 

performing a time division multiple access (TDMA) protocol to schedule the 

communications between sensors and the sink. The back-end server will conduct 

muscle activity recognition and motion tracking. The accelerometer data alone is used 

to perform muscle activity recognition as it provides significant features; 

accelerometer, gyroscope, and magnetometer data are all considered together for 

motion tracking. To recognize muscle activities, the system extracts time-domain and 

frequency-domain features to build a decision tree which will classify the type of 

muscle activities for newly arrived sensing data. The selected time-domain features 

contain root mean square of the accelerometer data and cosine correlation between the 

accelerometer axes, while the selected frequency-domain features are frequency 

domain entropy and power spectral density. To visualize and render the body motions, 

the accelerometer, gyroscope, and magnetometer collaborate to compute accurate 

orientations of these sensors through sensor data fusion algorithms. A similar system 

is designed in [61] which helps a patient conduct his/her rehabilitation program at 

home. Through an interactive program, the system will estimate how well a patient 

can achieve a certain level of body rehabilitation. This way, patients will no longer 

need to stay in a hospital as traditional rehabilitation requires. 
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Figure 12.6 The overview of the musculoskeletal monitoring system 

 

<A>12.4 Emergency response systems 
In emergencies, the interactions among people and the environment become much 

more diverse and the complexity of the emergency responses also becomes much 

greater. Thus, we review two types of emergency response systems: WSN-aided 

evacuation systems and mobility-supported search and rescue systems. The former 

type relies on a static WSN to guide people to exits, while the latter type introduces 

mobile entities to conduct search and rescue tasks. 

 

<B>12.4.1 Emergency evacuation systems 

This type of system exploits WSNs to find a safe path to exits in emergencies. 

Considering a fire, in [60] a distributed protocol is designed to coordinate sensors for 

computing the evacuation paths. The evacuation principle in [60] is to provide a user 

with the safest path bypassing hazardous regions instead of the shortest path which 

may be very close to the sources of hazards. To achieve this goal, each sensor node 
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will maintain a potential value, which is a level of danger, to guide people to the 

neighboring sensor node with the lowest potential value. Initially, each sensor is 

assigned a potential value according to its distance to the nearest exit. In case of 

emergencies, sensors within a certain distance from the emergency locations will form 

hazardous regions by raising their potential values so that sensors near the exits will 

have smaller potential values and sensors near the emergency locations will have 

higher potential values. The distributed protocol will identify the evacuation paths to 

exits along sensors with higher potential values to those with lower potential values. 

Moreover, [47] extends [60] to a 3D environment, where sensors are categorized into 

three classes: normal sensors, exit sensors and stair sensors. A sensor is considered to 

be in a hazardous region if either (1) it is within D hops away from hazards or (2) it is 

a stair sensor and its downstairs sensors are in a hazardous region. The evacuation 

principle is to guide people to the rooftops if there are no safe paths to the downstairs. 

However, such an emergency evacuation may suffer from a congestion problem and 

an oscillation problem. To solve the two problems, the objective of the former is to 

evacuate people as soon as possible in a load-balancing way, while the objective of 

the latter is to avoid guiding people to move back and forth. To solve the congestion 

problem, [6] proposes a distributed protocol to balance the number of evacuees 

between multiple paths to different exits. Each sensor knows its location and is able to 

detect the number of people within its sensing coverage using image-processing 

technologies. Similarly, each sensor maintains a potential value to find an evacuation 

direction towards its neighbors based on the number of people around itself. A sensor 

with a larger potential value implies that there are more people within its 

neighborhood. Therefore, each sensor will select the neighboring sensor with the 

lowest potential value to be its evacuation direction. Here, the potential value of each 

sensor is computed based on its current potential value, the number of people detected 

by the sensor, and the total number of people detected by its neighboring sensors. 

Since the evacuee density may affect the walking speed during evacuation, [5] 

extends [6] to reduce the congestion level by incorporating walking velocity into the 

potential value of a sensor, where the walking velocity is determined by a mapping 

function from the evacuee density to human walking speeds. Moreover, [7] and [4] 

focus on estimating evacuation time accurately. The system in [7] proposes a 

distributed protocol to estimate the evacuation time based on pre-stored corridor 

lengths and the moving velocity derived from the current evacuee density, while [4] 

analyzes the evacuation time based on a guiding tree of sensors rooted at the exit 

sensor, the corridor capacity and lengths, exit capacity, and evacuation distribution. 

On the other hand, a user may move back and find an alternate route since the hazard 

is spreading. To solve this oscillation problem, the system in [62] predicts the 
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dangerous spreading to compute a path to the exit with the minimal number of 

oscillations. 

 

<B>12.4.2 Search and rescue systems 

By integrating mobility entities and parallel computing, emergency response systems 

will be able to support more dynamic search and rescue tasks during an emergency. 

Since the dynamics of hazard spreading may force people to move, and the injured 

may need to communicate with the external world when the communication 

infrastructure fails, identifying the number of people and where they are in an 

emergency is usually the first step before rescue. In [54] a robot-sensor network 

system is designed to track people autonomously without a prior localization 

infrastructure. In this system, people generate detectable signals such as heat, CO2, or 

sounds; the sensors are responsible for detecting if some people are around them, and 

the robots will move around to find these people through sensor navigation. Some 

prototyping platforms provide firefighters with safety navigation while they are 

expediting rescue missions [50]. Two major components, namely ultrasonic beacons 

and ultrasonic trackers, are adopted to guarantee safe movements of firefighters. Each 

firefighter wears an ultrasonic tracker to receive signals from ultrasonic beacons. 

Three types of ultrasonic beacons are designed in the system for different purposes: 

firefighter beacons, exit beacons and auxiliary beacons. Each firefighter has a 

firefighter beacon so that injured firefighters can be found by other firefighters. Exit 

beacons are used to mark exits, while auxiliary beacons are used to mark way-points 

inside a building or injured/trapped people along a return path. However, since the 

pre-deployed sensor infrastructure provides limited information and reduced 

reliability in case of structural collapse, [52] designs a controllable flying sensing 

platform in support of search and rescue missions in an indoor emergency. On the 

other hand, while most existing systems consider an indoor fire emergency, the 

system in [21] implements a system, termed CenWits (Connection-less Sensor-Based 

Tracking System Using Witnesses), to search for lost or injured hikers in a large 

wilderness area. Instead of a well-connected network, all hikers form an opportunistic 

network to exchange their witnesses which indicate the encounter information with 

each other so as to locate missing hikers. This system consists of a number of sensors, 

access points (APs), location points (LPs), and an external processing center. Each 

hiker carries a sensor with a GPS receiver and an RF transmitter for communicating 

with other sensors, APs and LPs. A set of APs are deployed at predefined locations 

(e.g. intersections of footpaths or resting areas), and each AP is connected to the 

external processing center. A few LPs are deployed at particular locations to update 

sensors’ locations in case GPS cannot work. The external processing center is 
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responsible for collecting the witnesses from all APs. When two sensors are within 

communication range, they will record the each other’s presence and also exchange 

their earlier witnesses, where each record in the witnesses including the encountered 

node ID, the current time, the encountered location, and the number of transferred 

hops. Once a sensor meets an AP, all of its witnesses will be uploaded to the AP. 

Based on the witnesses, the system can estimate the possible locations of a missing 

hiker to perform rescue missions. Moreover, search and rescue systems may need to 

provide real-time and in-situ information for remote rescuers and commanders. 

However, processing and providing global detailed information is a 

computation-intensive task. Thus, [17] considers grid computing technology to 

support parallel computing in an emergency response system. This system is 

composed of four major components: data acquisition and storage, simulation 

component, agent-based command-control component, and grid middleware. The data 

acquisition and storage component collects raw sensing data from multiple types of 

sensors (e.g. smoke, temperature, and gas sensors), transforms the raw sensing data 

into an appropriate form (e.g. transforming thermocouple voltage readings into 

temperatures), and ensures database accuracy and reliability. The simulation 

component supports the prediction of fire spreading in a parallel and distributed 

manner. The agent-based command-control component provides remote rescuers and 

commanders with a user interface in support of query-and-response operations 

between them and the system. The grid middleware component provides a unified 

interface for communications between the simulation component and other 

components. 
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<A>12.5 Human activity inference 
Signals behind human activities provide emerging hints for modern CPS that will 

incorporate richer human input to design-promising applications. This section will 

review five different types of systems, each of which considers different signals of 

human activities to design CPS. The first type aims at conversation patterns, the 

second considers voice signals, the third pays attention to travel experience, the fourth 

targets social behavior, and the fifth looks at interactive gaming activities. 

 

<B>12.5.1 Conversation behavior analyzer 

As conversation is an important part of daily human activities, many application 

systems focus on monitoring human conversation for social purposes or verbal 

behavior therapy that helps children to speak better. Conversation behavior is studied 

from three perspectives: conversation group identification [38], speaker identification 

[36], and conversation pattern analysis and consultation [33, 23]. The first one is to 

figure out how many conversation groups are nearby, the second one is to recognize 

who is talking, and the third one extracts conversation features of users and reminds 

users to slow down conversation or listen to conversation more than speaking. 

 

Conversation group identification: In [38], multiple smartphones collaborate to find 

out the conversation groups nearby. Figure 12.7 shows the workflow of the system. 

Initially, all smartphones collaborate to discover neighboring smartphones based on a 

threshold of Bluetooth signal strength. When a smartphone perceives sounds, it will 

conduct a local classification algorithm to determine if the sounds are voices from the 

phone owner based on historical information, e.g. average level of loudness. Here, for 

the decision-making of local classification, this system assumes that the voices of the 

phone owner are usually louder than the voices recorded from other users. Once a 

smartphone detects a voice segment from the phone owner, it will request other 

smartphones to verify its voice detection through a collaborative voting mechanism. If 

the smartphone receives positive votes from all other smartphones, it will generate a 

voice vector with a start time Ti  and an end time Tj  and share the voice vector with all 

smartphones for conversation clustering. Finally, the system will cluster these users 

who do not speak at the same time and are not mostly silent at the same time into a 

single conversation group, since voice segments in the same conversation group are 

well synchronized and happen one after the other. One of the potential applications 

for such a system is to provide a communication topology analysis in the real world 

since conversations imply real-world social connections and are more reliable than 

online social networks in the cyber world. For example, the system can further find 

out social centers who have the most connections to other people. 
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Figure 12.7 The workflow of conversation group identification 

 

Speaker identification: The system in [36] exploits continuous audio sensing to 

identify the person you are talking with in order to avoid the awkward situation of 

forgetting his/her name. However, continuous sensing and data processing will 

quickly drain the smartphone battery since both are computation-intensive tasks 

conducted by the main processor of a smartphone. Thus, multiprocessor hardware 

architecture is considered to reduce the energy consumption of continuous sensing in 

the background, where lightweight sensing and data pre-processing is offloaded to a 

low-power processor. This system operates on a sequence of two stages from lower 

power requirements to higher power requirements. The low-power processor is 

attached with an external microphone and is responsible for sound and speech 

detection. Once human speech is detected, the low-power processor will wake up the 

main processor to conduct computation-intensive tasks including identification of 

high-quality speech frames, feature extraction from the speech frames, and speaker 

classification, where the speaker classification models are learned from daily phone 

calls and face-to-face conversations. 

 

Local classification
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Cluster 1 Cluster 2
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A voice segment detected 
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Announce a voice segment 
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Conversation pattern analysis and consultation: In a single conversation group, 

[33] exploits multiple smartphones to monitor conversational turns for better 

understanding personal social conversation behavior, so as to remind a user to listen 

to conversation from a particular group member. Here, a ‘conversational turn’ is a 

continuous segment of human speech with a start time and an end time. When a 

conversation happens among a group, group members’ smartphones will perceive 

different patterns of voice strength from each other depending on their positions. 

Based on the observation, the system can learn the signatures of each group member’s 

conversation to recognize the speaker and the duration of the conversation. This 

system analyzes personal conversation patterns including the number of people you 

are talking with, the number of conversational turns in a group, and the number of 

conversational turns between each pair of participants. This kind of technology is 

considered to treat children’s language delay through meta-linguistic analysis of 

parent–child conversation in a real-time manner [23]. Figure 12.8 shows the system 

architecture of the speech-language-therapy system. The parent has a smartphone 

paired with a Bluetooth headset, while the child has a smartphone associated with a 

Bluetooth microphone. Each smartphone collects sounds continuously and extracts 

the human voice using a bandpass filter. The smartphone on the child will send the 

filtered voice to the parent’s phone in real time for further data analysis. Meanwhile, 

the speech-turn monitor will transform the collected voice data into conversational 

turn information including speaker, start time, duration and speech rate based on 

predefined thresholds and then send the information to the meta-linguistic monitor. 

Based on the previous turn histories, the meta-linguistic monitor will trigger the 

reminders based on some reaction rules. 

 



21 
 

 

Figure 12.8 The workflow of the speech-language-therapy system 

 

<B>12.5.2 Mood detection 

This type of system exploits the physiological signals (e.g. voices) collected by 

smartphones to infer human psychological states (i.e. human mood). 

 

As psychological and affective states (such as stress and mood) are a significant 

element in driving social behavior and influencing physical and emotional well-being, 

[37] and [34] focus on sensing the psychological states of humans. Conventionally, 

the detection of symptoms of stress relies on biological sensors in an intrusive way, 

such as chemical analysis, skin conductance readings, and electrocardiograms. 

However, the use of such intrusive technologies may incur additional stress. 

Generally, when people feel stressed, their voice changes, which provides significant 

patterns for detecting symptoms of stress. Based on these observations, [37] exploits 

smartphones to recognize stress from human voice unobtrusively. A two-phase 

approach, including an offline training phase and an online estimation phase, is 
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designed to achieve this goal. In the offline training phase, a voice-based stress 

classifier is built based on eight voice features including standard deviation of pitch, 

difference between the maximal and the minimal pitch, perturbation in pitch, centroid 

frequency of the voice spectrum, ratio of frequency above 500 Hz, rate of speech, the 

power spectrum of a short-term voice, and the level of regularity. In the online 

estimation phase, the voice-based stress classifier determines if a person feels stressed 

according to the real-time sensed voices. However, since a smartphone is able to 

capture richer information in daily life, such as when and where we have been, whom 

we have been talking with, what applications we have been using, and even more, [34] 

infers moods of a user by analyzing communication history and usage patterns of 

applications in addition to assistance of built-in sensors. To build a mood estimation 

model, comprehensive data collection is launched to gather a participant’s feature 

patterns including everyday mood scores and usage patterns of smartphone. In the 

course of data collection, a user can input his/her current mood state with two 

five-level scores representing the two mood dimensions in [57], namely the pleasure 

dimension and the activeness dimension. For the pleasure dimension, scores of 1–5 

indicate ‘very displeased’, ‘displeased’, ‘neutral’, ‘pleased’, and ‘very pleased’, 

respectively. For the activeness dimension, scores of 1–5 indicate ‘very inactive’, 

‘inactive’, ‘neutral’, ‘active’, and ‘very active’, respectively. A user’s smartphone also 

captures records of social interaction including SMS information, email information, 

call information, application usage, web browsing, and user locations to build a 

multilinear regression model based on the statistical usage for estimating the mood of 

a user. 

 

<B>12.5.3 Road safety helpers 

Many research projects paid attention to improving personal travel experience through 

crowdsourced data and enhancing the safety of pedestrians and drivers using 

smartphones. In [18], users can share their journeys with people who have mobility 

patterns and everyday activities similar to their own. To enrich the information behind 

collected data and enhance data usage, the system provides users with an interactive 

interface for getting feedback along their journeys (e.g. traffic accidents or congestion) 

and exchanging instant messages between users. A publish/subscribe framework is 

designed to allow a user to access trips contributed to by a community. While travel 

safety is a critical issue, [63] and [69] focus on detecting unsafe conditions for 

pedestrians and drivers. A person engaged in a phone call while crossing the road is 

generally more at risk than others because the phone blocks the view of the user. To 

improve the safety of people who walk and talk, [63] uses the back camera of the user 

smartphone to detect vehicles approaching the user. The vehicle detection is based on 
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image recognition technologies with two separate phases, namely an offline training 

phase and an online detection phase. In the offline training phase, positive image 

samples and negative image samples are collected. A positive image sample contains 

the rear or frontal view of a car, while a negative image sample shows side views of 

cars or random urban environments. Both positive and negative image samples are 

considered to build a classification model through a machine learning algorithm. Then, 

the online car detection algorithm running on the smartphone is composed of four 

steps: (1) image capture, (2) image preprocessing, (3) car detection, and (4) user alert. 

The system triggers image capture only during an active phone call for energy-saving 

purposes. The image preprocessing step uses the accelerometer data to estimate the 

orientation of the smartphone and performs the image alignment according to the 

direction of gravity. The car detection determines whether an image represents a 

vehicle based on the classification model built by the offline training phase. If the 

smartphone detects a vehicle, an alert will be issued from the smartphone to remind 

the user of the car approaching. On the other hand, an approach using dual-camera 

smartphones to track dangerous driving behavior is an efficient way to reduce risk of 

traffic injury. In [69], the front and back cameras on a smartphone are properly 

scheduled to monitor dangerous driving conditions inside and outside a car. The front 

camera estimates the head direction and blinking rate of the driver by tracking the 

head poses and eyes to infer whether the driver is tired and distracted. The back 

camera monitors the distance between cars to detect whether the car is too close to the 

car ahead. When either situation is detected by the smartphone, it will change the 

color bar of driving status on the screen and announce an alert to remind the driver. 

 

<B>12.5.4 Social activity inference 

Some systems exploit smartphones to detect social activities and infer social intention. 

Two types of system are designed for this purpose. The first one is to find out social 

intention behind group activities, while the second one focuses on how to infer 

intention for device pairing for automatic data exchanges between two users. 

 

<C>12.5.4.1  Group social intention 

In [20], a group-based navigation system is designed to help users find a particular 

person in a social venue. Generally, since most people stand and walk around together 

in a social event (e.g. a conference or a party), this system assumes that the moving 

traces of users in the same group have high similarity. Based on the similarity of 

moving traces, the system can show the relative positions of users in a social event for 

finding a person. Figure 12.9 shows the system overview of the group-based 

navigation system. Each user carries a smartphone which will continuously collect 
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samples of accelerometer, digital compass, and Bluetooth received signal strength 

(RSS) from the neighboring clients. The accelerometer and digital compass data are 

considered together to estimate step vectors of a user based on step counts, personal 

stride length, and direction information. Then, the estimated step vectors and 

Bluetooth RSSs will be reported to the back-end server for further activity inference. 

The back-end server will analyze the collected sensing data to create a grouping graph 

based on proximity and trace similarity. There is proximity property between two 

smartphones if both of them receive Bluetooth RSSs from each other greater than a 

predefined threshold. To evaluate the similarity between two user traces, a distance 

function is defined based on the number of insert, delete, and replace operations 

needed to convert traces of a user into the traces of another user. For a given pair of 

proximity and trace similarity, the back-end server will compute the group likelihood 

between a pair of user clients. If the group likelihood between them is greater than a 

predefined threshold, there is an edge between them in the grouping graph. 

Meanwhile, the trace similarity is adopted to correct the estimated initial traces 

because of the property of group moving together. Once the grouping graph is created, 

the back-end server will estimate the relative positions of these user clients in the 

social event and show the group information on each user’s smartphone.  

 

 
Figure 12.9 An overview of the group-based navigation system 
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In addition to walking together, a group of people may take photos together in a social 

activity. The system in [53] identifies people who appear in the same photo and tags 

more detailed activity information in the photo automatically. A promising 

application of this system is to automatically share and tag human activities in online 

social networks (e.g. Facebook) through the analysis of sensing data. The main 

difference between this system and other automatic knowledge extraction systems 

(e.g video surveillance systems) is richer human social interaction and human input, 

while other automatic knowledge extraction systems are focusing more on specific 

even detection. Thus, the system will tag a photo with a format of‘photo-taking time, 

photo-taking place, photo-taking participants, and activities in the photo’ to enrich the 

information behind the photo. Figure 12.10 shows a scenario of the automatic image 

tagging system, where user D is ready to take a photo for user A and user B, and user 

C is in the proximity. When user D activates the smartphone’s camera to take a photo, 

user D’s smartphone will broadcast to request all of the users’ smartphones in the 

proximity to collect sensing data from the microphone, GPS, compass, light sensor 

and accelerometer. When user D clicks the camera, these smartphones will record all 

sensing data for a short period of time for further image tagging. The image tags will 

be generated by the four modules: location detection, time detection, participant 

recognition, and activity recognition. The former two modules tag the location and 

time of the photo based on existing localization technologies and the system 

timestamp of smartphones, where the light intensity is considered to determine if the 

photo is taken indoors. The participant recognition infers people in the photo based on 

the motion signatures of users captured by the accelerometer, user facing extracted 

from the compass data, and motion vectors of moving objects extracted from 

consecutive snapshots. For example, the motion signatures of users A and B will be 

very different from the motion signatures of user C at the photo-taking moment 

because user C may move around at that moment, the photo-taking participants’ 

facing angles are usually opposite to the photographer’s, and the motion vectors of 

moving objects from these consecutive snapshots will have high correlation between 

these participants’ accelerometer data when they are playing a sport (e.g. table tennis). 

The activity recognition conducts activity classification to classify the user activity 

based on the accelerometer data and acoustic data, where limited types of activities 

including standing, sitting, walking, jumping, biking, playing, talking, music, and 

silence are considered. 
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Figure 12.10 Architecture of the image-tagging system 

 

<C>12.5.4.2 Device pairing intention  

Some systems infer social intention behind body motions and gestures to facilitate 

information sharing automatically. In [51], a user can pair his/her mobile device with 

another nearby user’s mobile device by pointing his/her smartphone towards the 

intended person. Figure 12.11 shows how to detect user intention of device pairing 

before data exchanges, where user A points the smartphone towards user B with two 

consecutive beep signals emitted at P and Pʹ positions. Each nearby smartphone will 

compute the elapsed time of arrival (ETOA) between the two beep signals. Finally, 

user A’s smartphone will select the one with the maximal ETOA difference between 

the two beep signals for device pairing based on the triangular inequality dPP (= dPB – 

dPʹB) > dPC – dPʹC.  

 

 
Figure 12.11 Principle of device pairing 

 

Another system in [66] automatically infers human handshake behavior in a social 

event to enable natural information exchange after detecting handshaking behavior 
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between two persons. As shown in Figure 12.12, in the physical world, the handshake 

behavior between two people implies that a social link will be authenticated between 

them before they exchange personal information (e.g. exchange of business cards). On 

the other hand, in the cyber world, a handshake procedure is adopted by two nodes to 

authenticate each other before they exchange data. The system follows the concept of 

‘handshake’ to design an authentication mechanism to facilitate automatic data 

exchanges between two users following the handshake behavior. In this system, the 

similarity of the accelerometer data between two user smartphones is considered to 

determine if they have handshake behavior. Each user carries a smartphone and wears 

a watch-like sensor node with an accelerometer on his/her wrist. Each sensor node is 

associated with the user smartphone through Bluetooth, while the communications 

between sensors are through IEEE 802.15.4. Each sensor node is responsible for 

detecting handshaking events and reporting accelerometer data to its smartphone. 

Upon receiving accelerometer data from sensors, each smartphone will compute the 

similarity between the two users’ accelerometer data. If the similarity is greater than a 

predefined threshold, the smartphone will exchange the user’s personal contact 

information with the other user automatically. 

 

 
Figure 12.12 System architecture of cyber-physical handshake 
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<B>12.5.5 Virtual-physical games 

Recently, the confluence of sensing capabilities of mobile devices and wireless 

networking technologies has made social gaming systems more user-friendly, where 

people carry portable gaming devices with built-in sensors to interact with remote 

users anytime, anywhere. Exploiting diverse devices to enhance game interfaces 

opens up many opportunities to interweave body motions in the physical world with 

the fabric of social games in the virtual world. Thus, this kind of application focuses 

on designing virtual-physical gaming systems to achieve such sophisticated 

interactions. 

 

In [49], a social exergame supporting multiple exercise devices is designed for 

playing repetitive exercises among several users, where each user can choose a 

preferred device to play the game such as treadmill running, stationary cycling, hula 

hooping, and rope jumping. Figure 12.13 shows the system architecture of the gaming 

system, where a user’s exercise intensity can be measured using standard metrics, e.g. 

rotations per minute for hula hoops, rope jumps, and stationary bikes, or speed (km/h) 

for treadmills. There are four key components in this system, the game input 

converter, the voice channel manager, the network manager, and the exercise 

information manager. The game input converter will map the intensity of body 

exercises from devices to input values of the game. The voice channel manager 

provides voice communications among users to facilitate social interaction during 

game play. The network manager supports communication fairness among users due 

to network delay variation. The exercise information manager summarizes exercise 

statistics, e.g. duration and total calories burned.  

 

 
Figure 12.13 System architecture of a social game with multiple heterogeneous 
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controllers 

 

Instead of repetitive exercises, [67] exploits body sensor networks (BSNs) to build a 

virtual-physical social network platform which can facilitate group Tai-Chi exercises, 

a popular sport in Chinese communities with continuous and diverse body motions. 

As shown in Figure 15.14, through this system, users can share with each other 

remotely their Tai-Chi motions on conventional social networks (e.g. Facebook). In 

this system, there are three major components: (1) the BSNs, (2) the social network, 

and (3) clients. In a BSN, each user wears nine sensors and a sink node. Each sensor 

has a three-axis accelerometer and a digital compass, and the sink node runs a polling 

protocol to collect sensory data from these sensors to the social network. The social 

network contains two components, the Tai-Chi engine and the community engine. 

The Tai-Chi engine is responsible for computing and rendering users’ motions, and 

the community engine provides a web service embedded in the conventional social 

network to facilitate social interaction among users (i.e. sharing users’ Tai-Chi 

motions). To enhance user experiences of gaming systems, [65] exploits BSNs 

incorporated with multiple game screens to broaden players’ views and provide more 

realistic interaction with the fabric of games. As shown in Figure 12.15, the player 

wears four inertial sensor nodes, one on the broomstick, one on the forearm, one on 

the upper arm, and one on the club to play the Quidditch sport from the Harry Potter 

movie. In addition to the BSN, the game engine is responsible for computing the 

orientations of sensors to represent angles of four cameras (east, west, north and south) 

for providing a 360-degree panorama of the game. 

 

 
Figure 12.14 System architecture of virtual-physical Tai-Chi exercise 
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Figure 12.15 A multi-screen video game 
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<A>12.6 Smart city systems 
Finally, we review three types of urban-scale systems that will involve large-scale 

environmental data, long-term human activities, and urban transportation behavior. 

  

<B>12.6.1 Urban-scale monitoring 

Many research efforts exploit crowdsourcing and participatory sensing (e.g. using 

sensor-equipped mobile devices) to collect urban-scale sensing data such as noise 

levels, air quality, and network connectivity. In general, smartphones can collect 

dynamic sensing data at an incredible rate to generate a huge amount of data, 

contributing to the so-called Big Data. While data quality is a significant concern, 

which is addressed in [59], sensing capability has spurred the development of 

promising applications that can extract knowledge from Big Data to reflect city 

dynamics. 

 

<C>12.6.1.1 Noise monitoring  

Noise pollution is one of the important problems in urban environments which will 

affect human mobility, well-being and health. Conventionally, a noise-monitoring 

system deploys a few sound level meters at certain locations to measure noise level 

and creates a noise map by extrapolating city-wide noise levels from local 

measurements. However, the typical approach is error-prone, costly, and only 

available for outdoor places. Emerging sensing methodologies consider the better 

support of participation and engagement of citizens to collect fine-grained and 

city-wide sound data using smartphones. The system described in [42] uses 

smartphones as noise sensors and involves citizens who carry them to measure, locate 

and collect qualitative sound data intermittently. Data collection is conducted by a 

mobile application running on a smartphone to collect sound data from a microphone, 

location data from the GPS sensor, timestamp, and user inputs at given intervals. The 

collected data is then sent to the back-end server for further data analysis. The 

collected sound data will be visualized using three colors which indicate the health 

risk of the current exposure level based on predefined thresholds, where green is for 

‘no risk’, yellow means ‘be careful’, and red is for ‘risky’. In addition to the measured 

sound data, a user is allowed to input free text (e.g. car, home, or offices) to provide 

richer information in the collected data. 

 

<C>12.6.1.2 Air quality monitoring  

The monitoring of air quality in an urban area has also attracted many researchers’ 

attention recently. The system in [73] concerns the real-time and fine-grained 

information of air quality in a city area based on spatial and temporal features 
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extracted from existing monitoring stations and diverse data sources observed in the 

city which have a strong correlation with air qualities such as meteorology, traffic 

flow, human mobility, structure of road networks, and point of interests (POIs). 

Figure 12.16 shows the framework of the air quality inference system that consists of 

two major stages, namely offline learning and online inference. This system models 

the city area as grids, where some of the grids contain air quality stations to collect air 

quality index (AQI) records. A mapping algorithm is incorporated to represent the 

meteorological data, POIs, and vehicle trajectories on the road network for further 

feature extraction. The temporally related and spatially related features will be 

extracted from the collected data. The temporally related features (i.e. features that 

vary with time) are extracted from meteorological data and the spatial trajectories 

including temperature, humidity, and average speed of vehicles, while the spatially 

related features (i.e. features that vary with location) are extracted from POIs and road 

network databases including the density of POIs and the length of roads in a region. 

After the inference model is created in the offline stage, the online stage will infer the 

air quality for those grids without air quality stations and visualize the city-wide air 

quality information for further use cases. 

 

 

Figure 12.16 The framework of the urban air quality inference system 

 

<C>12.6.1.3 Network quality assessment 

Network quality (in terms of connectivity, etc.) is an important aspect of smart cities. 

As operators tend to over-claim network qualities such as connection speed, and 

actual measurements on devices are error-prone, assessing network quality in terms of 
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real user experience may yield a more “useful” reference. Therefore, some systems 

exploit sensing capabilities of smartphones to crowdsource for such user experience 

for Wi-Fi [74] and cellular networks [75]. In [74], a Wi-Fi advisory system called 

WiFi-Scount has been developed on Android to fulfil this purpose. It crowdsources 

from smartphone users their ratings (“fast”, “medium”, “slow”) on WiFi hotspots, as 

well as (implicitly) obtains various other useful data including locations, SSIDs, 

signal strengths, link speeds, uploading and downloading speeds of Wi-Fi access 

points. WiFi-Scout provides three advisory modes: (1) offline search, (2) online 

review, and (3) gamification-based Wi-Fi map. The first mode allows users to search 

for available WiFi access points in the proximity of specified queried regions even 

when users do not have Internet connection. The second node allows users who 

already connect to WiFi access points to report their experience on using these Wi-Fi 

access points through their smartphones. The last mode displays the crowdsourced 

locations of WiFi access points on a city map, but unlike other similar applications, 

each access point is represented by a user who has contributed the most useful 

information to it. The contributions of users are quantified using a social-economic 

scheme [76], which provides incentives for users to report and improves the trust level 

of user reports. Another system [75] assesses quality for cellular networks, also using 

crowdsourcing techniques. Other than the locations of cellular towers, it also provides 

assessments of signal quality and coverage for nearby cellular towers. 

 

<B>12.6.2 Urban mobility and activity diaries 

Many research efforts pay attention to human mobility data collected by smartphone 

which is represented as an activity diary for better understanding city dynamics and 

facilitating urban planning. We study two types of activity diaries, namely 

transportation activity diaries and everyday life diaries. The former type focuses on 

everyday commute patterns, while the latter finds out more about various patterns in 

our daily lives. 

 

<C>12.6.2.1 Transportation diaries  

This type of system exploits smartphones to figure out the transportation behavior of 

individuals. In [8], a mobile sensing system is designed to collect personal cycling 

experience and share cycling-related data among cycling communities through the 

developed web service. This system consists of three tiers: the mobile sensor tier, the 

sensor access point tier, and the back-end server tier. For the mobile sensor tier, each 

bicycle is equipped with several types of sensor including a GPS, a CO2 meter, an 

accelerometer, a microphone, a magnetic sensor, a pedal speed meter, and a 

Bluetooth/802.15.4 gateway, while the cyclist carries a mobile phone. These sensors 
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form a bicycle-area network (BAN). The intra-BAN communications between sensors 

are through IEEE 802.15.4, while the sensor data is sent from the BAN to the mobile 

phone via a Bluetooth/IEEE 802.15.4 gateway. The sensor access point tier consists 

of a number of mobile phones with global system for mobile communications/general 

packet radio service (GSM/GPRS) data network service and static IEEE 802.11 

access points. This tier provides reliable network access to convey sensing data from 

the mobile sensor tier to the back-end server tier. The back-end server tier implements 

data-mining and data-visualization algorithms incorporated with a query-response 

handler to display detailed information about cyclist experience, such as cyclist routes 

on the map, current speed, average speed, distance traveled, calories burned, and CO2 

levels along the cycling routes.  

 

In addition to cycling experience, [68], [19] and [56] figure out everyday commute 

behavior. The system in [68] uses smartphones to automatically carry out 

transportation activity survey which investigates when, where and how people travel 

in an urban area. This system is composed of two major components, namely a 

front-end sensing system and a back-end data analysis system. To optimize energy 

usage of a smartphone, the front-end sensing avoids using the GPS sensor in the 

user’s long-stay places. To achieve the objective, a place-learning algorithm is 

implemented on each smartphone to collect the Wi-Fi signatures of a place if the user 

stays in the place for a long period of time. When the user enters a place, the user 

smartphone will conduct place matching based on the learned Wi-Fi signatures and 

avoid using GPS if the current place has the same Wi-Fi signatures as one of the 

learned places. In the back-end data analysis system, clustering algorithms are 

implemented to detect if a user stops at certain locations. In addition, a 

decision-tree-based classification algorithm is considered to detect the transportation 

modes of users, where the maximal speed, between-stop average speed, accelerometer 

force variance, and distance to the closest bus and mass rapid transport (MRT) stops 

are extracted to construct the decision tree. However, GPS-based detection of 

transportation mode has some essential limitations on energy consumption, 

availability in indoor/underground environments, and detection accuracy. Thus, [19] 

considers accelerometer-only approaches to detect transportation modes, where the 

gravity is estimated based on the accelerometer measurements. This system designs a 

hierarchical classification algorithm incorporating three classifiers from 

coarse-grained towards fine-grained to detect the transportation mode of a user. The 

first classifier detects if a user is walking. If not, the second classifier will detect if the 

user is stationary. If not, the last classifier will perform fine-grained detection to 

classify the current transportation behavior into one of five transportation modes: bus, 
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train, metro, tram or car. In [56], a route-sharing and recommendation system is 

constructed, where users can contribute and search fine-grained elevation and distance 

information along their routes to know if a route is suitable for a certain mode of 

transportation (e.g. hiking or cycling). 

 

<C>12.6.2.2 Everyday life diaries  

In addition to transportation activities, this type of system considers more diverse 

mobility and activity patterns [13, 43]. The system in [13] constructs a text-searchable 

diary which transforms collected GPS data points into textual descriptions of semantic 

locations and activity categories so that users can search their historical activities 

using text inputs (e.g. ‘where did I have dinner?’). There are four phases to extract 

meaningful information from continuous and massive GPS raw data: (1) segmentation 

of moving patterns, (2) trajectory clustering, (3) creation of semantic places, and (4) 

activity matching. Since the collected continuous GPS signals contain a lot of 

redundant information, the first phase represents these continuous GPS signals as a 

sequence of linear routes with non-uniform representative GPS points. The second 

phase links these segments into a small number of trajectories based on the spatial 

correlation between these segments, where each trajectory is represented by a pair of 

‘begin point’ and ‘end point’ segments. In the third phase, to transform these GPS 

locations into semantic places, the system conducts reverse geo-coding which maps 

the GPS coordinates into textual descriptions (e.g. Starbucks). Finally, the last phase 

infers possible user activities in a certain location by matching the location categories 

provided by Yelp which collects user reviews and recommendations of restaurants, 

shopping, nightlife and entertainment. On the other hand, [43] focuses on identifying 

live points of interest (LPOIs) which are real-time activity hotspots in a city. This 

system uses smartphones to collect audio clips and location information through GPS, 

Wi-Fi, and cellular networks in those places where people spend a significant amount 

of their time. The audio data is used to infer the gender of a participant. Once the 

location data is sent to the back-end servers, a density-based clustering algorithm is 

adopted to find out the activity hotspots and the detailed information of participants 

(e.g. 20% males and 80% females). 

 

<B>12.6.3 Intelligent transportation systems 

As intelligent transportation systems are important elements in a smart city, we will 

review some systems from four perspectives of services including finding a taxi or 

passengers, carpooling services, traffic monitoring, and finding parking lots. 

 

<C>12.6.3.1 Taxi/passenger finder  
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There are two essential requirements of taxi services in a city area: (1) finding the best 

locations where a taxi driver can find passengers easily and (2) finding the best 

locations or road segments where people get a taxi easily. To meet the two 

requirements, [70] proposes a recommendation system for finding passengers and 

vacant taxis based on historical GPS trajectories of taxis. This system consists of an 

offline data-mining component and an online recommendation component. The 

offline data-mining component is responsible for collecting and detecting parking 

places of taxis to learn statistical results of taxis’ pick-up/drop-off behavior (e.g. 

parking places, time interval between two consecutive vacant taxis, and queue length 

of passengers) and passenger mobility patterns (e.g. when and where passengers get 

on/off a taxi). The online recommendation component incorporates a taxi 

recommender and a passenger recommender to provide recommendation of taxi 

services. The taxi recommender provides taxi drivers with the better locations and 

routes to these locations so that taxi drivers can maximize the profit of the next trip, 

while the passenger recommender provides a user with the nearby parking places of 

taxis with the minimal waiting time. 

 

<C>12.6.3.2 Carpooling services  

Finding the best route schedule for taxi carpooling is an efficient means to reduce 

transportation cost and air pollution. To achieve the goal, an urban-scale taxi 

carpooling service is considered in [41]. Figure 12.17 shows the framework of the taxi 

carpooling service which considers a dynamic scheduling problem of carpooling in a 

city. Each taxi will update its status including its ID, the current time, the 

geographical location, the number of on-board passengers, and its current schedule if 

the taxi driver is willing to join the carpooling service. Each mobile user can submit a 

user query anytime, anywhere, where the user query will be associated with the 

submission time, the pick-up point, the drop-off point, and the early and late bounds 

of pick-up and drop-off times. When a user query is submitted by a mobile user, the 

carpooling search and scheduling components will search the candidate taxi that 

satisfies the user query and has the minimum additional incurred travel distance. This 

system incorporates a spatiotemporal index of axis which will speed up the searching 

process based on a grid-based road model. If the user query is satisfied, the system 

will update the spatiotemporal index of taxis and inform the corresponding taxi of the 

new schedule. However, as many systems have focused on how to exploit the 

mobility patterns of taxis/passengers to schedule carpooling routes, [71] integrates 

software and hardware design as well as a win-win fare model which is an incentive 

mechanism[40, 39] to encourage both taxi drivers and passengers to join the 

carpooling service. In this system, there are three components: passenger clients, 
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Cloud server, and onboard TaxiBox. The passenger client will provide delivery 

requests to the Cloud server for taxi dispatch. Based on the delivery requests provided 

by passengers, the Cloud server will return a carpooling option with a reduced fare for 

passengers’ approval, along with a non-carpooling option with a regular fare for 

comparison. When a passenger approves taxi carpooling, the Cloud server will find a 

suitable taxi for carpooling and send out the route schedule to the taxi’s onboard 

TaxiBox. The onboard TaxiBox is equipped with several types of sensors including 

alcohol/smoke sensors, a three-axis accelerometer, a camera, a microphone, a GPS 

sensor and a communication module. The onboard TaxiBox is responsible for 

reporting the taxi’s physical status (e.g. locations and speeds) and the delivery status 

(e.g. delivery distance, the number of passengers, fare, working duration, start time, 

end time, pick-up locations and drop-off locations) to the Cloud server. A unique 

feature of this system is the win-win fare model which shares the benefit of taxi 

carpooling among the taxi driver and all of the passengers proportionally. For 

example, three passengers request a taxi with 17, 3, and 45 non-carpooling fare, 

respectively. If they join carpooling, the total carpooling fare is 52. Thus, the total 

benefit of carpooling is (17 + 32 + 45) – 52 = 42. If α denotes the sharing 

percentage of all passengers, then 1 –α is the sharing percentage of the driver. 

Accordingly, each passenger will get the benefit proportionally based on his/her travel 

distance. 

 

 

Figure 12.17 The framework of the dynamic taxi carpooling service 

 

<C>12.6.3.3 Traffic monitoring and navigation  
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Providing real-time and in-situ traffic information for remote users is an essential 

requirement in a smart city. A participatory CPS prototype system called 

ContriSense:Bus is presented in [31] for public transportation. It provides bus 

commuters with information such as estimated time to arrival and bus speed in order 

to ease travel planning and improve travel experience for bus commuters. It employs 

RESTful API and designs algorithms for near real-time sensing and mapping of GPS 

readings to correct sequences of bus stops. One key feature of the system is that the 

traffic information is crowdsourced from the public mass, i.e. bus commuters. This 

makes incentives critical to such crowdsourcing or participatory sensing systems, 

which are addressed by [40] using a game-theoretical approach and by [39] using an 

auction-based approach, respectively. 

 

The system in [22] considers a vehicle sensor network for traffic monitoring. Each 

vehicle is equipped with a set of sensors including a GPS sensor, a Wi-Fi 

communication module, and a camera. These vehicles collect traffic-related sensing 

data and report to the back-end server through opportunistic communications in the 

sense that the sensing data is allowed to be exchanged among vehicles and between a 

vehicle and a wireless access point if they are within communication range of each 

other. A remote user can acquire traffic information through a visualization interface. 

Since the bandwidth and connection are not always available, this system allows users 

to specify how to prioritize data (e.g. preferring to deliver a summary before detailed 

values). In [35], GPS data of vehicles are exploited to estimate real-time speed 

information of roads, where the data uploaded by parked cars and cars waiting for 

traffic lights are given lower weights in determining the road speed. The Waze system 

[64] is a community-based traffic navigation system, where crowdsourced traffic 

information is shared among users to improve driving experience in their daily lives. 

 

  

<C>12.6.3.4 Parking finder  

Finding available parking lots sometimes wastes time and fuel consumption in daily 

life. To find an available parking lot efficiently, [32] considers WSNs to monitor 

availability of parking lots and provide drivers with real-time parking information. 

Figure 12.18 illustrates the system architecture. Each car park is deployed with a 

WSN with a sink, where each sensor node is composed of a heat sensor, a light sensor, 

a variation sensor, and an RF communication module. Each sensor is powered by a 

solar system. These sensors will cooperate to detect if a parking lot is occupied and 

send the collected information to the sink in a multi-hop way. Then, the information 

of parking lots will be collected to the back-end system for further analysis. A driver 
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can view the number of available parking lots and their locations through a mobile 

application. 

 

 

Figure 12.18 System architecture of a parking finder application 

<A>12.7 Conclusion: discussion, comparison, and future challenges  
Finally, we discuss fine-grained classification based on some technical features and 

requirements of these systems and point out opportunities and challenges in future 

systems. 

 

<B>12.7.1  Discussion and comparison 

Technically, we classify these systems from the following six perspectives: network 

configuration, communication patterns, sensing techniques, information diversity, 

decision-making techniques, and service ranges, as shown in Table 12.1. For network 

configuration, smart space systems, healthcare systems, and emergency response 

systems are usually deployed in a particular place with fixed network deployment; 

emergency response systems, human activity inference, and smart city systems 

contain some mobile entities in the network (e.g. robots or mobile phones); nodes and 

mobile entities in human activity inference and smart city systems can join/depart the 

network dynamically. For communication patterns, the traffic patterns in the former 

three types of systems are collecting sensing data periodically; the communications in 

emergency response systems and human activity inference sometimes are on-demand 
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only when some specific events are detected (e.g. hazards and human conversations); 

emergency response systems and smart city systems may have cross-network 

information flows among heterogeneous networks. For sensing techniques, the former 

three types of systems rely on WSN-based sensing techniques, human activity 

inference exploit built-in sensors on smartphones, and smart city systems incorporate 

WSN-based and mobile sensing techniques together. For information diversity, the 

former four types of systems usually perceive data in a small-scale area; the latter 

three have multi-modal data sources; and dynamic human data input (e.g. 

conversation voices and human mobility) is an important factor in the last two types 

of systems. For decision-making techniques, the former three can be solved using 

some deterministic algorithms or in-network decision-making; the latter three 

sometimes need non-deterministic algorithms, data mining, and machine learning in 

support of decision-making in an uncertain environment and situation; the last one 

even relies on Big Data analytics to extract knowledge behind sensing information. 

For service ranges, the former two are usually in a home area; the emergency 

response systems and human activity inference serve people in multi-stair buildings or 

small-scale road segments; the last one works in a city-scale area. 

 

Table 12.1 Features of WSN-CPS applications 

 

 

Aspects for system 

classification 

Features  Smart 

space 

systems 

Health‐care 

systems 

Emergency 

response 

systems 

Human 

activity 

inference 

Smart city 

systems 

Network 

configuration 

Place‐centric deployment          

Network with mobile entities           

Dynamic network formation           

Communication 

patterns 

Periodic communications           

On‐demand communications           

Cross‐network data flows           

Sensing techniques  WSN‐based sensing           

Mobile sensing           

WSN + mobile sensing           

Information diversity  Small‐scale data monitoring             

Multi‐modal data sources           

Human data input           

Decision‐making 

techniques 

Deterministic algorithms and 

in‐network decision‐making 

         

Non‐deterministic algorithms, data 

mining, and machine learning 

         

Big Data analytics           

Service ranges  Home areas           

Multi‐stair buildings or small‐scale 

road segments 

         

City‐scale areas           
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<B>12.7.2  Opportunities and challenges beyond 

Finally, we look ahead to some potential research challenges and open issues for 

next-generation WSN-CPS applications and emerging Internet of Things (IoT) 

applications. 

 

<C> 12.7.2.1 Cross-domain intelligence for urban Internet of Things (IoT)  

As the European Smart Cities Project [12] has been considering different service 

sectors such as Smart Governance, Smart Mobility, Smart Utilities, Smart Buildings 

and Smart Environment to assess the level of smartness of European cities, 

cross-domain technique integration will be an essential requirement in the future of 

WSN-CPS applications, where data sensing, knowledge extraction, and data 

visualization techniques are important technical elements in future system. The data 

sensing techniques will aim at how to collect multidimensional and high-quality data 

effectively, how to collect data without compromising personal privacy, and how to 

design incentive sensing models which may incorporate participatory sensing, 

crowdsourcing, cooperative and opportunistic sensing technologies for novel 

applications. The knowledge extraction will focus on how to figure out deep 

information behind data through data mining, machine learning, and knowledge 

discovery methods, how to infer human intentions and activities, and how to design 

distributed, parallel, and scalable algorithms to handle large, multi-modal, 

heterogeneous and distributed streams of data. The data visualization will emphasize 

how to visualize heterogeneous streaming data in a real-time way, how to represent 

data in a more intuitive way, and how to abstract the relationship between data. 

 

<C>12.7.2.2  Software-defined networking (SDN) for future internet  

With the Internet Engineering Task Force (IETF) and the Telecommunication 

Standardization Sector of the International Telecommunication Union (ITU-T) 

standardization efforts for SDN [24, 26], SDN architecture provides more flexible 

networking operation for the future internet, where the control plane is decoupled 

from the data plane. To accomplish such an SDN architecture, OpenFlow [46] is one 

mechanism to facilitate the communications between the control plane and the data 

plane. The SDN represents potential trends to support future IoT applications for 

conveying information between different entities. 

 

<C>12.7.2.3  Machine-to-machine (M2M) communication issues  

As some M2M standard groups are making efforts on a common M2M service layer 

[25], a lightweight publish/subscribe messaging transport protocol [45], and M2M 
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architecture and interworking technologies [11], automated M2M communications 

and intelligence enables a wide variety of applications incorporating wired or wireless 

communications, sensors, devices, computers, robots, mobile equipment, and the 

Cloud to communicate and exchange information efficiently. Future trends are to 

enable WSN-CPS with standard-compliant M2M technologies to develop more 

scalable, flexible, secure, and cost-efficient WSN-CPS applications. 

 

Coupling cyber security and physical privacy: Cross-architecture data flow is a 

basic concept of future IoT systems that will considerably increase the difficulty of 

protecting system security and personal privacy. Since all of the physical entities are 

interconnected in the cyber world, an abstraction layer in-between will be an essential 

requirement to convey information between physical entities and cyber systems so 

that information flow security in the cyber world and personal privacy in the physical 

world are guaranteed simultaneously. For example, when an entity A commits an 

actuation to an entity B in a condensed and privacy-preservation way, the abstraction 

layer will be able to authenticate the interdependence of behavior; meanwhile, entities 

can keep pre-fetched content (e.g. an aggregated map with location-enhanced 

information) [1] via a pull-based information flow instead of pushing the content of 

itself. 

 

Flexible human–computer interaction: As the promising M2M applications attract 

a lot of research and ad industry attention, human input becomes a critical commodity. 

Therefore, cross-platform human–computer interfaces will be important elements in 

next-generation systems to bridge human intention in the physical world and actuation 

in the cyber world. Moreover, with portable, wearable, and mobile human–computer 

interfaces becoming popular, innovative human–computer interfaces will be able to 

facilitate the interaction between humans and systems naturally. For example, a 

magnet could be a kind of human–computer interface to cooperate with a magnetic 

sensor grid that can recognize distribution of the applied magnetic field and further 

infer human intention [55]. 

  



43 
 

<A>References 
[1] S. Amini, J. Lindqvist, J. Hong, J. Lin, E. Toch and N. Sadeh. Cache: caching 

location-enhanced content to improve user privacy. In Proceedings of the ACM 

International Conference on  Mobile Systems, Applications, and Services, pages 

197–210, Washington, DC, USA, 28 June-1 July, 2011, Publisher: ACM. 

[2] American Society of Heating, Refrigerating and Air Conditioning Engineers 

(ASHRAE) Standard 55: Thermal environmental conditions for human occupancy. 

ASHRAE, 2004. 

[3] B. Balaji, J. Xu, A. Nwokafor, R. Gupta and Y. Agarwal. Sentinel: Occupancy 

based HVAC actuation using existing WiFi infrastructure within commercial 

buildings. In Proceedings of the ACM International Conference on Embedded 

Networked Sensor Systems, pages 17:1–17:14, Rome, Italy, 11-14 November, 2013, 

Publisher: ACM. 

[4] L.-W. Chen, J.-H. Cheng, Y.-C. Tseng, L.-C. Kuo, J.-C. Chiang and W.-J. Lin. 

LEGS: A load-balancing emergency guiding system based on wireless sensor 

networks. In Proceedings of the IEEE International Conference on Pervasive 

Computing and Communications, pages 486–488, Lugano, Switzerland, 19-23 March, 

2012, Publisher: IEEE. 

[5] P.-Y. Chen, Z.-F. Kao, W.-T. Chen and C.-H. Lin. A distributed flow-based 

guiding navigation protocol in wireless sensor networks. In Proceedings of the 

International Conference on Parallel Processing, pages 105–114, Taipei, Taiwan, 

13-16 September, 2011, Publisher: IEEE. 

[6] W.-T. Chen, P.-Y. Chen, C.-H. Wu and C.-F. Huang. A load-balanced guiding 

navigation protocol in wireless sensor networks. In Proceedings of the IEEE Global 

Telecommunications Conference, pages 1–6, New Orleans, LA, USA, 30 November – 

4 December, 2008, Publisher: IEEE. 

[7] Y. Chen, L. Sun, F. Wang and X. Zhou. Congestion-aware indoor emergency 

navigation algorithm for wireless sensor networks. In Proceedings of the IEEE Global 

Telecommunications Conference, pages 1–5, Houston, Texas, UAS, 5-9 November, 

2011, Publisher: IEEE. 

[8] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn and A. T. 

Campbell. Bikenet: A mobile sensing system for cyclist experience mapping. ACM 

Transactions on Sensor Networks, 6(1): 6:1–6:39, 2009. 

[9] V. L. Erickson, S. Achleitner and A. E. Cerpa. POEM: Power-efficient 

occupancy-based energy management system. In Proceedings of the IEEE 

International Symposium on Information Processing in Sensor Networks, pages 203–

216, Philadelphia, 8-11 April, 2013, Publisher: IEEE. 

[10] V. L. Erickson and A. E. Cerpa. Thermovote: Participatory sensing for efficient 



44 
 

building HVAC conditioning. In Proceedings of the ACM Workshop on Embedded 

Systems for Energy-efficient Buildings, pages 9–16, Toronto, Canada, 6 November, 

2012, Publisher: ACM. 

[11] ETSI-M2M. See http://www.etsi.org/technologies-clusters/technologies/m2m. 

[12] European smart cities. See http://www.smart-cities.eu/. 

[13] D. Feldman, A. Sugaya, C. Sung and D. Rus. iDiary: from GPS signals to a 

text-searchable diary. In Proceedings of the ACM International Conference on 

Embedded Networked Sensor Systems, pages 6:1–6:12, Rome, Italy, 11-14 November, 

2013, Publisher: ACM. 

[14] J. Froehlich, E. Larson, T. Campbell, C. Haggerty, J. Fogarty and S. N. Patel. 

HydroSense: Infrastructure-mediated single-point sensing of whole-home water 

activity. In Proceedings of the ACM International Conference on Ubiquitous 

Computing, pages 235–244, Orlando, Florida, US, 2009, Publisher: ACM.  

[15] A. Frye, M. Goraczko, J. Liu, A. Prodhan and K. Whitehouse. Circulo: Saving 

energy with just-in-time hot water recirculation. In Proceedings of the ACM 

Workshop on Embedded Systems for Energy-efficient Buildings, pages 16:1–16:8, 

Rome, Italy, 13-14 November, 2013, Publisher: ACM. 

[16] S. Gupta, M. S. Reynolds and S. N. Patel. ElectriSense: Single-point sensing 

using EMI for electrical event detection and classification in the home. In 

Proceedings of the ACM International Conference on Ubiquitous Computing, pages 

139–148, Copenhagen, Denmark, 26-29 September, 2010, Publisher: ACM. 

[17] L. Han, S. Potter, G. Beckett, G. Pringle, S. Welch, S.-H. Koo, G. Wickler, A. 

Usmani, J. L. Torero and A. Tate. FireGrid: An e-infrastructure for next-generation 

emergency response support. Journal of Parallel and Distributed Computing, 70(11): 

1128–1141, 2010. 

[18] M. Harding, J. Finney, N. Davies, M. Rouncefield and J. Hannon. Experiences 

with a social travel information system. In Proceedings of the ACM International 

Conference on Ubiquitous Computing, pages 173–182, Zurich, Switzerland, 8-12 

September, 2013, Publisher: ACM. 

[19] S. Hemminki, P. Nurmi and S. Tarkoma. Accelerometer-based transportation 

mode detection on smartphones. In Proceedings of the ACM International Conference 

on Embedded Networked Sensor Systems, pages 13:1–13:14, Rome, Italy, 11-14 

November, 2013, Publisher: ACM. 

[20] T. Higuchi, H. Yamaguchi and T. Higashino. Clearing a crowd: 

context-supported neighbor positioning for people-centric navigation. In Proceedings 

of the International Conference on Pervasive Computing, pages 325–342, Newcastle, 

UK, 18-22 June, 2012, Publisher: Springer. 

[21] J.-H. Huang, S. Amjad and S. Mishra. CenWits: A sensor-based loosely coupled 



45 
 

search and rescue system using witnesses. In Proceedings of the ACM International 

Conference on Embedded Networked Sensor Systems, pages 180–191, San Diego, 

USA, 2-4 November, 2005, Publisher: ACM. 

[22] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. 

Balakrishnan and S. Madden. Cartel: A distributed mobile sensor computing system. 

In Proceedings of the ACM International Conference on Embedded Networked Sensor 

Systems, pages 125–138, Boulder, Colorado, USA, 31 October - 3 November, 2006, 

Publisher: ACM. 

[23] I. Hwang, C. Yoo, C. Hwang, D. Yim, Y. Lee, C. Min, J. Kim and J. Song. 

TalkBetter: Family-driven mobile intervention care for children with language delay. 

In Proceedings of the ACM International Conference on Computer Supported 

Cooperative Work and Social Computing, pages 1283–1296, Baltimore, MD, USA, 

15-19 February, 2014, Publisher: ACM. 

[24] IETF, forwarding and control element separation (forces). 

See https://datatracker.ietf.org/wg/forces/documents/. 

[25] ITU-T Focus Group M2M. See 

http://www.itu.int/en/ITUT/focusgroups/m2m/Pages/default.aspx. 

[26] ITU-T, Software-defined Networking (SDN). See 

http://www.itu.int/en/ITUT/sdn/Pages/default.aspx. 

[27] F. Jazizadeh and B. Becerik-Gerber. Toward adaptive comfort management in 

office buildings using participatory sensing for end user driven control. In 

Proceedings of the ACM Workshop on Embedded Systems for Energy-efficient 

Buildings, pages 1–8, Toronto, Canada, 6-9 November, 2012, Publisher: ACM. 

[28] M. Kay, E. K. Choe, J. Shepherd, B. Greenstein, N. Watson, S. Consolvo and J. 

A. Kientz. Lullaby: a capture & access system for understanding the sleep 

environment. In Proceedings of the ACM International Conference on Ubiquitous 

Computing, pages 226–234, Pittsburgh, USA, 5-9 September, 2012, Publisher: ACM. 

[29] Y. Kim, T. Schmid, Z. M. Charbiwala, J. Friedman and M. B. Srivastava. 

Nawms: Nonintrusive autonomous water monitoring system. In Proceedings of the 

ACM International Conference on Embedded Networked Sensor Systems, pages 309–

322, Raleigh, North Carolina, 5–7 November, 2008, Publisher: ACM. 

[30] Y. Kim, T. Schmid, Z. M. Charbiwala and M. B. Srivastava. ViridiScope: Design 

and implementation of a fine grained power monitoring system for homes. In 

Proceedings of the ACM International Conference on Ubiquitous Computing, pages 

245–254, Orlando, Florida, US, 2009, Publisher: ACM. 

[31] J. K.-S. Lau, C.-K. Tham and T. Luo. Participatory cyber physical system in 

public transport application. In Proceedings of CCSA, IEEE/ACM International 

Conference on Utility and Cloud Computing, pages 355–360, Melbourne, Australia, 



46 
 

5-7 December, Publisher: IEEE/ACM. 

[32] P. Lee, H.-P. Tan and H. Mingding. A solar-powered wireless parking guidance 

system for outdoor car parks. In Proceedings of the ACM International Conference on  

Embedded Networked Sensor Systems, pages 423–424, Seattle, Washington, USA, 1-4 

November, 2011, Publisher: ACM. 

[33] Y. Lee, C. Min, C. Hwang, J. Lee, I. Hwang, Y. Ju, C. Yoo, M. Moon, U. Lee 

and J. Song. SocioPhone: Everyday face-to-face interaction monitoring platform 

using multi-phone sensor fusion. In Proceedings of the ACM International 

Conference on Mobile Systems, Applications, and Services, pages 375–388, Taipei, 

Taiwan, 25-28 June, 2013, Publisher: ACM. 

[34] R. LiKamWa, Y. Liu, N. D. Lane and L. Zhong. MoodScope: Building a mood 

sensor from smartphone usage patterns. In Proceedings of the ACM International 

Conference on Mobile Systems, Applications, and Services, pages 389–402, Taipei, 

Taiwan, 25-28 June, 2013, Publisher: ACM. 

[35] C.-H. Lo, W.-C. Peng, C.-W. Chen, T.-Y. Lin and C.-S. Lin. CarWeb: A traffic 

data collection platform. In Proceedings of the IEEE International Conference on  

Mobile Data Management, pages 221–222, Beijing, China, 27-30 April, 2008, 

Publisher: IEEE. 

[36] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson and J. Liu. SpeakerSense: 

Energy efficient unobtrusive speaker identification on mobile phones. In Proceedings 

of the International Conference on Pervasive Computing, pages 188–205, San 

Francisco, CA, USA, 12-15 June, 2011, Publisher: Springer. 

[37] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T. 

Campbell, D. Gatica-Perez and T. Choudhury. StressSense: Detecting stress in 

unconstrained acoustic environments using smartphones. In Proceedings of the ACM 

International Conference on Ubiquitous Computing, pages 351–360, Pittsburgh, USA, 

5-9 September, 2012, Publisher: ACM. 

[38] C. Luo and M. C. Chan. SocialWeaver: Collaborative inference of human 

conversation networks using smartphones. In Proceedings of the ACM International 

Conference on Embedded Networked Sensor Systems, pages 20:1–20:14, Rome, Italy, 

11-14 November, 2013, Publisher: ACM. 

[39] T. Luo, H.-P. Tan and L. Xia. Profit-maximizing incentive for participatory 

sensing. In Proceedings of IEEE INFOCOM, Toronto, Canada, 27 April - 2 May, 

2014, Publisher: IEEE. 

[40] T. Luo and C.-K. Tham. Fairness and social welfare in incentivizing participatory 

sensing. In Proceedings of IEEE SECON, pages 425–433, Seoul, Korea, 18-21 June 

2012, Publisher: IEEE. 

[41] S. Ma, Y. Zheng and O. Wolfson. T-Share: A large-scale dynamic taxi 



47 
 

ridesharing service. In Proceedings of the IEEE International Conference on Data 

Engineering, pages 410–421, Brisbane, Australia, 8-11 April, 2013, Publisher: IEEE. 

[42] N. Maisonneuve, M. Stevens, M. E. Niessen and L. Steels. NoiseTube: 

Measuring and mapping noise pollution with mobile phones. In Proceedings of the 

International Symposium on Information Technologies in Environmental Engineering, 

pages 215–228, Thessaloniki, Greece, 28-29 May, 2009, Publisher: Springer. 

[43] E. Miluzzoy, M. Papandreax, N. D. Lanez, A. M. Sarroffy, S. Giordanox and A. 

T. Campbell. Tapping into the vibe of the city using VibN, a continuous sensing 

application for smartphones. In Proceedings of the International Symposium on From 

Digital Footprints to Social and Community Intelligence, pages 13–18, Beijing, China, 

17-21 September, 2011, Publisher: ACM. 

[44] F. Mokayay, B. Nguyen, C. Kuo, Q. Jacobson, A. Rowey and P. Zhangy. MARS: 

A muscle activity recognition system enabling self-configuring musculoskeletal 

sensor networks. In Proceedings of the IEEE International Conference on 

Information Processing in Sensor Networks, pages 191–202, Philadelphia, USA, 8-11 

April, 2013, Publisher: ACM. 

[45] OASIS Standard-MQTT Version 3.1.1. See 

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqttv3.1.1.html. 

[46] OpenFlow. See https://www.opennetworking.org/sdn-resources/openflow. 

[47] M.-S. Pan, C.-H. Tsai and Y.-C. Tseng. Emergency guiding and monitoring 

applications in indoor 3D environments by wireless sensor networks. International 

Journal of Sensor Networks, 1(1/2): 2–10, 2006. 

[48] M.-S. Pan, L.-W. Yeh, Y.-A. Chen, Y.-H. Lin and Y.-C. Tseng. A WSN-based 

intelligent light control system considering user activities and profiles. IEEE Sensors 

Journal, 8(10): 1710–1721, 2008. 

[49] T. Park, I. Hwang, U. Lee, S. I. Lee, C. Yoo, Y. Lee, H. Jang, S. P. Choe, S. Park 

and J. Son. ExerLink – enabling pervasive social exergames with heterogeneous 

exercise devices. In Proceedings of the ACM International Conference on Mobile 

Systems, Applications, and Services, pages 15–28, Low Wood Bay, Lake District, 

United Kingdom, 2012, Publisher: ACM. 

[50] Summit safety. See http://www.summitsafetyinc.com/. 

[51] C. Peng, G. Shen, Y. Zhang and S. Lu. Point&Connect: Intention-based device 

pairing for mobile phone users. In Proceedings of the ACM International Conference 

on Mobile Systems, Applications, and Services, pages 137–150, Kraków, Poland, 

22-25 June, 2009, Publisher: ACM. 

[52] A. Purohit, Z. Sun, F. Mokaya and P. Zhang. SensorFly: Controlled-mobile 

sensing platform for indoor emergency response applications. In Proceedings of the 

IEEE International Symposium on Information Processing in Sensor Networks, pages 



48 
 

223–234, Chicago, IL, USA, 12-14 April, 2011, Publisher: ACM. 

[53] C. Qin, X. Bao, R. R. Choudhury and S. Nelakuditi. TagSense: A 

smartphone-based approach to automatic image tagging. In Proceedings of the ACM 

International Conference on Mobile Systems, Applications, and Services, pages 1–14, 

Washington, DC, USA, 28 June - 1 July, 2011, Publisher: ACM. 

[54] J. Reich and E. Sklar. Robot-sensor networks for search and rescue. In 

Proceedings of the IEEE International Workshop on Safety, Security and Rescue 

Robotics, Gaithersburg, MD, USA, 22 - 25 Aug 2006, Publisher: IEEE. 

[55] C.-H. S. C.-T.W. B.-Y. C. D.-N. Y. Rong-Hao Liang and Kai-Yin Cheng. 

Gausssense: Attachable stylus sensing using magnetic sensor grid. In Proceedings of 

the ACM User Interface Software and Technology Symposium, pages 319–326, 

Cambridge Massachusetts, 7-10 October, 2012, Publisher: ACM. 

[56] RouteYou. See http://www.routeyou.com/. 

[57] J. A. Russell. A circumplex model of affect. Journal of Personality and Social 

Psychology, 39(6): 1161–1178, 1980. 

[58] V. Srinivasan, J. Stankovic and K. Whitehouse. FixtureFinder: Discovering the 

existence of electrical and water fixtures. In Proceedings of the IEEE International 

Conference on Information Processing in Sensor Networks, pages 115–128, 

Philadelphia, USA, 8-11 April, 2013, Publisher: ACM. 

[59] C.-K. Tham and T. Luo. Quality of contributed service and market equilibrium 

for participatory sensing. In Proceedings of the IEEE International Conference on 

Distributed Computing in Sensor Systems (DCOSS), pages 133–140, Cambridge, 

Massachusetts, 21-23 May, 2013, Publisher: IEEE. 

[60] Y.-C. Tseng, M.-S. Pan and Y.-Y. Tsai. Wireless sensor networks for emergency 

navigation. IEEE Computer, 39(7): 55–62, 2006. 

[61] Y.-C. Tseng, C.-H. Wu, F.-J. Wu, C.-F. Huang, C.-T. King, C.-Y. Lin, J.-P. Sheu, 

C.-Y. Chen, C.-Y. Lo, C.-W. Yang and C.-W. Deng. A wireless human motion 

capturing system for home rehabilitation. In Proceedings of the IEEE International 

Conference on Mobile Data Management, pages 359–360, Taipei, Taiwan, 18-21 

May, 2009, Publisher: IEEE. 

[62] L. Wang, Y. He, Y. Liu, W. Liu, J. Wang and N. Jing. It is not just a matter of 

time: Oscillation-free emergency navigation with sensor networks. In Proceedings of 

the IEEE International Symposium on Real-Time Systems, pages 339–348, San Juan, 

4-7 December 2012, Publisher: IEEE. 

[63] T. Wang, G. Cardone, A. Corradi, L. Torresani and A. T. Campbell. WalkSafe: A 

pedestrian safety app for mobile phone users who walk and talk while crossing roads. 

In Proceedings of the ACM Workshop on Mobile Computing Systems and 

Applications, pages 5:1–5:6, San Diego, California, 12-13 February, 2012, Publisher: 



49 
 

ACM. 

[64] Waze. See https://www.waze.com/. 

[65] C.-H. Wu, Y.-T. Chang and Y.-C. Tseng. Multi-screen cyber-physical video 

game: An integration with body-area inertial sensor networks. In Proceedings of the 

IEEE International Conference on Pervasive Computing and Communications 

Workshops, pages 832–834, Mannheim, Germany, 29 March - 2 April, 2010, 

Publisher: IEEE. 

[66] F.-J. Wu, F.-I. Chu and Y.-C. Tseng. Cyber-physical handshake. In Proceedings 

of the ACM Special Interest Group on Data Communication (SIGCOMM) Conference, 

pages 472–473, Toronto, Ontario, Canada, 15-19 August, 2011, Publisher: ACM. 

[67] F.-J. Wu, C.-S. Huang and Y.-C. Tseng. My Tai-Chi book: A virtual-physical 

social network platform. In Proceedings of the IEEE International Symposium on 

Information Processing in Sensor Networks, pages 428–429, Stockholm, Sweden, 

12-16 April 2010, Publisher: ACM. 

[68] F.-J. Wu, H. B. Lim, F. Pereira, C. Zegras and M. E. Ben-Akiva. A user-centric 

mobility sensing system for transportation activity surveys. In Proceedings of the 

ACM International Conference on Embedded Networked Sensor Systems, pages 74:1–

74:2, Rome, Italy, 11-14 November, 2013, Publisher: ACM. 

[69] C.-W. You, M. M. de Oca, T. J. Bao, N. D. Lane, H. Lu, G. Cardone, L. 

Torresani and A. T. Campbell. CarSafe: A driver safety app that detects dangerous 

driving behavior using dual-cameras on smartphones. In Proceedings of the ACM 

International Conference on Ubiquitous Computing, pages 671–672, Pittsburgh, USA, 

5-9 September, 2012, Publisher: ACM. 

[70] N. J. Yuan, Y. Zheng, L. Zhang and X. Xie. T-Finder: A recommender system 

for finding passengers and vacant taxis. IEEE Trans. Knowledge and Data 

Engineering, 25(10): 2390–2403, 2013. 

[71] D. Zhang, Y. Li, F. Zhang, M. Lu, Y. Liu and T. He. coRide: Carpool service 

with a win-win fare model for large-scale taxicab networks. In Proceedings of the 

ACM International Conference on Embedded Networked Sensor Systems, pages 9:1–

9:14, Rome, Italy, 11-14 November, 2013, Publisher: ACM. 

[72] J. Zhang, Q. Zhang, Y.Wang and C. Qiu. A real-time auto-adjustable smart 

pillow system for sleep apnea detection and treatment. In Proceedings of the IEEE 

International Conference on Information Processing in Sensor Networks, pages 179–

190, Philadelphia, USA, 8-11 April, 2013, Publisher: ACM. 

[73] Y. Zheng, F. Liu and H.-P. Hsieh. U-Air: When urban air quality inference meets 

big data. In Proceedings of ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, pages 1436–1444, Chicago, IL, USA, 11-14 August, 

2013, Publisher: ACM. 



50 
 

[74] F.-J. Wu and T. Luo. WiFiScout: A Crowdsensing WiFi Advisory System with 

Gamification-based Incentive. In IEEE International Conference on Mobile Ad hoc 

and Sensor Systems (MASS) (Demo paper), Philadelphia, Pennsylvania, 27-30 

October, 2014, Publisher: ACM. 

[75] OpenSignal. See http://opensignal.com/. 

[76] T. Luo, S. S. Kanhere, and H.-P. Tan. SEW-ing a simple endorsement web to 

incentivize trustworthy participatory sensing. In IEEE International Conference on 

Sensing, Communication, and Networking (SECON), 30 June-3 July, Singapore, 

2014, Publisher: IEEE.  

 


