
Participatory Cyber Physical System in
Public Transport Application

John Kah-Soon Lau, Chen-Khong Tham, Tie Luo
Department of Electrical and Computer Engineering

National University of Singapore

{elelksj, eletck, eleluo}@nus.edu.sg

Abstract—Population in the urban areas around the world
is increasing yet energy and natural resources which are non-
renewable, have continued to deplete. This scenario leads us
to the many challenges faced by public transportation since
it is directly linked to urbanization. From a civilian point of
view, proper travel planning and knowledge of others’ travel
experiences are useful in easing public transportation woes. We
apply Cyber Physical System (CPS) within cyber-physical-socio
space to make those capabilities possible. In this approach, we
regard data as a service, data are contributed and queried by
the public masses. Location and time represent the physical
domain and data with information derived from them repre-
sent the digital domain in our CPS design. We designed and
implemented a prototypical system named ContriSenseCloud
that works based on client-server model. The system has two
main distinctive platforms, namely Service Exchange Platform
(SEP) and Application-specific Exchange Platform (AEP). The
SEP is designed to be as generalizable as possible whereas AEP
is where our current public transportation applications reside.
Such architecture enables extensibility of ContriSenseCloud to
other application domains. Other contributions include RESTful
Application Programming Interface (API) in CPS, near real-time
sensing, and mapping of GPS readings to correct sequence of bus
stops.

Index Terms—Cyber physical system, cyber physical society,
participatory sensing, data as a service, public transportation

I. INTRODUCTION

To encourage public transport ridership remains a main

agenda in counteracting irreversible human impact behind

climate change [1]. However, the population density increase at

large cities has made the effort more difficult. Peak hour during

which high level of passenger congestion and traffic congestion

often occur, is usually predefined though it may actually vary

across different locations. Being able to observe such variation

in real-time will add value to commuters’ travel experience

so that they can plan their journey accordingly. However,

providing such a capability is faced with the challenge that

either transit agencies do not deploy real-time tracking [2]

or they are reluctant to release the data which they deem

proprietary.

Hence we present ContriSenseCloud, an extensible cyber

physical system that manages grassroots participatory sensing

in public transportation. The first application ContriSense-

Cloud hosts is ContriSense:Bus, which helps commuters plan

their bus journey based on information distilled from user-

contributed data and allows them to contribute data via smart-

phones. The system also allows third party developers to access

anonymized user-contributed spatial-temporal data as a web

service through RESTful [3] API.

Participatory sensing makes use of mobile devices to cre-

ate interactive, participatory sensor networks that allow both

public and professional users to collect, analyze, and share

local knowledge [4]. A cyber physical system is an integration

of physical processes and digital computation that exposes its

computing capability to the outside by networking. Without

such exposure, it is merely an embedded system [5]. The

system can be extended into cyber-physical-human space or

cyber-physical-socio space. Cyber-physical-socio space or cy-

ber physical society implies merging of social interaction be-

tween humans with physical processes and digital computation

whereas cyber-physical-human space lacks the interaction [6].

Our system design shows that participatory sensing concept

is closely related to cyber-physical-human space or cyber-

physical-socio space.

Previous implemented participatory sensing systems via

smartphones focused on various classifications and method to

track underground vehicle [2] as well as on personal pattern

discovery [7]. However our focus is to deploy participatory

sensing application in CPS that delivers data as a service.

We apply GPS trajectory database and MATE algorithm [8]

in developing ContriSense:Bus application. The TPF system

was evaluated with simulation based on real-time actual traffic

data [8] while ContriSenseCloud and ContriSense:Bus were

productized for public usage. In context of [6], E. Lu et al

implemented system is within cyber-physical space whereas

our implemented system is within cyber-physical-socio space.

We regard a node in GPS trajectory database as a bus stop

instead of road intersection and GPS trajectory to navigation

path mapping is direction dependent instead of directionless.

Another past related work is the development of CPS as an

application framework. The framework is accessible by Java

library classes, in other words code as API [9]. In our case,

ContriSenseCloud delivers data as API. CPS based on cyber-

physical-socio space named SenseWorld was implemented and

demonstrated [10]. SenseWorld did not use smartphone as

sensor though the paper stated that it would be incorporated

as part of future work.

In the next section, the design and implementation of Con-

triSenseCloud is described. Section III mentions how RESTful

API works in the system. Section IV contains ContriSense:Bus

algorithms, and Section V, preliminary system evaluation.

2011 Fourth IEEE International Conference on Utility and Cloud Computing

978-0-7695-4592-9/11 $26.00 © 2011 IEEE

DOI 10.1109/UCC.2011.59

355

Section VI concludes the paper.

II. SYSTEM ARCHITECTURE

In our system, data and information are different concepts

in that the latter are derived from processing and analyzing

the former. For example in ContriSense:Bus, data are user-

contributed GPS with timestamp traces and information are

segments of travel time between 2 different places. Bus com-

muters represent the public users and third party developers

represent the professional users with regard to participatory

sensing definition. Furthermore, public users are either contrib-

utors who are compelled by an incentive scheme to contribute

data regardless of travel experience quality or inquirers who

benefit from contributed data in order to avoid undesired

journey at certain point in time.

The system design is based on client-server model in

which the client-side consists of smartphones and static sensor

systems (e.g. temperature, motion, sound) whereas the server-

side runs on top of JBoss Application Server (AS) middleware

that connects to MySQL database. In Figure 1, there are two

major platforms:-

• Service Exchange Platform (SEP) - General platform that

deals with data and information exchange.

� Service Discovery - Enumerates all services hosted.

� Service Consumer - Serves data as an API.

� Service Contributor - Allow developers to stream or

store their data.

� Event Processing - Process incoming data e.g. aver-

aging, summing, counting, etc.

• Application-specific Exchange Platform (AEP) - Spe-

cialized platform that serves various applications e.g.

ContriSense:Bus and ContriSense:Car.

SEP and AEP are related to each other in the sense that

applications that are developed using data as API from SEP can

later be hosted on AEP. Developers have a choice of hosting

applications themselves or on AEP. SEP is designed to be as

generic as possible so it can scale up as more modalities are

added in. It is generalizable because all incoming and outgoing

data are declared as string data type. Since there is only one

data type, new modalities code can be auto-generated before

recompilation.

In Figure 2, spatial-temporal sensing is periodic event and

query is aperiodic event [11] between Android client and

the server. Spatial-temporal sensing starts from client-side in

which GPS with timestamps are recorded every 15 seconds.

Each record is stored in memory and sent to server after 3

minutes. Therefore there are 12 records gathered in each 3

minutes period. Query on the other hand can be executed at any

point in time even while sensing is running. The C++ daemon

performs more intensive computations on behalf of stateless

PHP programs. Apache Thrift [12] is used for seamless binary

communication between PHP and C++ programs.

Illustrated in Figure 3, supply and demand between users

and developers form social interaction in which the system acts

as intermediary. Supply is user-contributed data and demand

is either information queried by users or data subscribed

Fig. 1. ContriSenseCloud architecture (Arrow indicates data and information
flow)

Fig. 2. ContriSense:Bus architecture

by developers. By removing supply-demand and subscription

(service consumer), the system loop becomes opened and it

is now within cyber-physical-human space instead of cyber-

physical-socio space.

III. RESTFUL API

The SEP is a Java servlet developed using RESTEasy

framework that is in full compliant with JAX-RS (Java API for

RESTful Web Services) specification. We use ContriSense:Bus

as an example to briefly describe how the API works for

developers. Based on Figure 3, assume the following:-

• Commuter C and commuter D contribute spatial-temporal

data to ContriSense:Bus with their smartphones while

traveling on buses.

• In SEP, spatial-temporal data from buses are registered

with service ID number 1.

Fig. 3. Cyber physical society

356

• Trace ID is 1 for commuter C and 2 for commuter D.

• Trace ID number 1 has 20 spatial-temporal data i.e. GPS

points with timestamps and trace ID number 2 has 30

spatial-temporal data.

• The base URI for the API as a web service is

http://example.com/xchange/api/data/view.

The data or resources are represented in XML and

JSON format of which developers have a choice of select-

ing either one. Developers can write applications to send

requests to SEP via HTTP in order to obtain historical

(stored mode) or latest (stored or steam mode) data. Cur-

rently spatial-temporal data are stored in MySQL database

and to access them, one can use HTTP GET method

such that http://example.com/xchange/api/data/view/[service

ID]/[trace ID]/[trace index] hence:-

• To access the whole current spatial-temporal data

� XML:

http://example.com/xchange/api/data/view/1

� JSON:

http://example.com/xchange/api/data/json/view/1

• To access trace ID number 2

� XML:

http://example.com/xchange/api/data/view/1/2

� JSON:

http://example.com/xchange/api/data/json/view/1/2

• To access 18th datum (a point) of trace ID number 1

� XML:

http://example.com/xchange/api/data/view/1/1/18

� JSON:

http://example.com/xchange/api/data/json/view/1/1/18

We also provide RESTful features for users to stream, store

and subscribe other form of data such as temperature, sound,

et cetera. We do not elaborate on this since it is beyond the

scope of this paper.

IV. CONTRISENSE:BUS ALGORITHMS

We developed near real-time sensing because transmitting

each spatio-temporal datum in real-time to server consumes a

lot of client-side devices battery power. Therefore the datum

is collected every 15 seconds instead of 1 or 2 seconds to

reduce client power consumption and server load. Table I

outlines the aforementioned algorithm. As for querying in Con-

triSense:Bus, the information generated from user-contributed

data are considered real-time only if there are at least a few

users contributing data at the queried bus service, its direction,

and time. NRTS algorithm is implemented in PHP and S2B

algorithm is implemented in C++.

As depicted in Figure 4, the red line along the road is the

actual bus trajectory on which a user is contributing while

commuting whereas the green straight line connects at least

two successive bus stops mapped from the actual trajectory.

The green line consists of segment(s) with each segment

defined as a line that connects 2 nodes or bus stops. The

objective is to prevent the black line from been plotted as

a segment since it violates the predefined bus stop sequence

TABLE I

NRTS: NEAR REAL-TIME SENSING ALGORITHM

(Client-side)

1. T = Nτ where T = 180s and τ = 15s hence N = 12.

2. Record d = [i, j, k, l,m, n, o, p] at each τ .

3. Every t = t+ T , send S = {d1, d2, ..., dN} to server via HTTP.

(Server-side)

1. Accept d from client.

2. Check if the trip is registered in database by i.

3. IF i does not exist:-

a. Insert i, j, k, l, m, n, o, p into database.

b. nodeID = S2B(j, k, o, p, 0). Refer to Table II.

c. Store nodeID in database.

4. ELSE:-

a. nodepreviousID = nodeID from 3.c or 4.d.vii.

b. Insert i, j, k, l, m, n, o, p into database.

c. nodeID = S2B(j, k, o, p, nodepreviousID).

d. IF nodeID != nodepreviousID (means a segment is detected):-

i. Check whether the segment exists in database by

nodeID and nodepreviousID .

ii. IF segment does not exist:-

1. Assign unique number to segmentID .

2. Insert nodeID and nodepreviousID tagged

to segmentID in database.

iii. ELSE:-

1. Retrieve segmentID from database.

iv. ΔtsegmentID = mnodeID −m
node

previous
ID

v. tc =
mnodeID

(HH×3600+MM×60+SS)

900s

vi. Store ΔtsegmentID and tc tagged to

segmentID for MATE algorithm.

vii. Update nodeID and x tagged to i in database.

e. ELSE:-

i. Update x tagged to i in database.

t = recording time.

i = unique trip ID.

j = latitude.

k = longitude.

l = GPS point radius (an accuracy indicator).

m = timestamp (YYYY-MM-DD HH:MM:SS).

n = username. Not accessible via SEP.

o = bus service number.

p = bus service direction.

T = period of uploading S to server.

τ = period of getting d.

d = a spatial-temporal datum.

S = set of d per period of T .

Segment = a pair of nodes with different ID string.

ΔtsegmentID = travel time of a segment.

tc = time code, representation of time in 900s (15 minutes).

Trace = the whole spatial-temporal data in 1 journey.

= {ST , S2T , S3T , ..., Stotal travel time}.

= {dx} where x = trace index number = 0, 1, 2, ..., |trace| − 1

357

Fig. 4. Application of S2B algorithm

TABLE II

S2B: SPATIAL DATA TO BUS STOPS MAPPING ALGORITHM

1. Get BS from memory with S as the key.

2. Initialize dmin to a large number.

3. IF j and k are the first coordinate:-

a. FOREACH ix in BS :-

i. dgps = haversine((j, k), (j(BS [ix]), k(BS [ix]))

ii. IF dgps < dmin:-

1. dmin = dgps
2. IF dmin <= Kmax THEN nodemin

ID = BS [ix]

4. ELSE:-

a. FOREACH ix in BS :-

i. IF continue flag == TRUE:-

1. nodenext
ID = BS [ix]

2. dgps = haversine((j, k), (j(BS [ix]), k(BS [ix]))

3. dr = dgps exp(ix− ixcurrent)

4. IF dr < dmin:-

a. dmin = dr
b. IF dmin <= Kmax:-

i. nodemin
ID = nodenext

ID

ii. IF dmin <= Kmin THEN BREAK

ii. IF BS [ix] == nodepreviousID AND ix != |BS | − 1:-

1. ixcurrent = ix

2. nodemin
ID = nodepreviousID

3. Set continue flag = TRUE

5. Return nodemin
ID

j = latitude.

k = longitude.

o = bus service number.

p = bus service direction.

dr = relative distance.

dgps = haversine distance.

dmin = minimum distance.

Kmax = maximum scaling constant = 0.5

Kmin = minimum scaling constant = 0.15

nodemin
ID = closest correct node ID.

nodepreviousID = previous node ID.

nodenext
ID = next node ID.

S = o concatenated to ’d’ and p.

e.g. 151d0 or 151d1, to simplify data structure.

ix = bus stop index number.

BS = bus stop sequence of a particular bus service and direction.

={nodeID,ix} where ix = 0, 1, 2, ..., |BS | − 1

Fig. 5. Android app screenshots

even though the 2 bus stops are nearest to each other. To

ensure the correct green line is indexed as a segment, the

S2B algorithm (Table II) does not only compute haversine

distance between 2 coordinates to determine the next bus stop

but also the exponential distance of the next bus stop index

number to current bus stop index number in an ordered bus

stop sequence list. In other words, the further away a bus stop

is to the current bus stop in a predefined sequence regardless

of physical distance, the higher weight assigned. Our current

system supports all SBS and SMRT public bus services as

well as NUS shuttle bus services in Singapore in which their

predefined bus stop sequences were gathered from [13], [14].

V. PRELIMINARY SYSTEM EVALUATION

We have released ContriSense:Bus Android application to

Android Market and as of September 2011, there are 246

installs [15] and 148 user sign-ups. Figure 5 is the captured

screenshots of sensing and querying on Android smartphones,

where there are 4 segments listed in the query result.

Shown in Figure 6 are 4 traces contributed by users on dif-

ferent bus services around Singapore with bus stops correctly

mapped from spatial trajectories. The traces are visualized

by using Google Maps Javascript API. Nevertheless there

are conditional cases in which an additional bus stop was

erroneously mapped because it is very near to the destination

bus stop at which users alighted. Also, the additional bus stop is

the next predefined stop directly after the destination bus stop.

Based on traces received so far, such errors are uncommon

as most bus stops are situated much further from each other.

Identified root cause is that Kmax and Kmin are not dynamic.

The system server-side has been deployed and evaluated

on Dell PowerEdge T410 with CPU (2.4GHz, 12MB cache),

12GB RAM, and 1.0Gbps network speed. The evaluation is

divided into 2 parts which are performance measurements

between Android clients and server as well as between de-

velopers’ API call and server. The measurements were done

through siege [16], an open source HTTP/HTTPS stress tester.

358

Fig. 6. User-contributed traces

Fig. 7. Test case 1 result

Latency or response time from server was measured in 4 test

cases. All test cases except test case 3 were based on only 1

actual user-contributed trace (ID: 29, Bus: 151, Direction: 0,

From: Bef Crown Ctr, To: Opp Blk 352, Start time: 2011-

08-29 17:28:48, End time: 2011-08-29 17:46:07, Content:

57 recorded spatial-temporal data, Number of segments: 19).

Using siege tool, each test case was repeated for 30 seconds

to calculate the average response time.

A. Android Clients and Server

Test case 1 assumed 1 user querying the server for travel

time between 2 bus stops. The user submitted 5 queries in

which each corresponding result gave 0 (for 1 segment with

travel time = 0 that means no data contributed yet), 1 (for

1 segment), 2 (for 2 segments), 3 (for 3 segments), and 19

(for 19 segments) travel durations. The test case result on

Figure 7 shows that latency is directly proportional to number

of segments in a query regardless of travel time value since

Fig. 8. Test case 2 result

Fig. 9. Anonymized spatial-temporal datum

the latency for 1 queried segment with 0 travel time is near to

1 queried segment with 1 travel time.

In Figure 8, test case 2 validated that query latencies

with regard to different number of concurrent users do not

differ much because of the non-blocking server feature applied

through Apache Thrift libraries. Nevertheless, response time

for each query increases with number of concurrent users.

Between 3 and 8 concurrent users, the latency difference was

larger due to resizing of thread pool whereas between 8 and

15 (or 1 and 3) concurrent users, the latency difference was

smaller since the handling of queries was still within thread

pool capacity.

B. Developers and Server

Figure 9 highlights the difference between XML and JSON

response at API call. Test case 3 proved that response time

for JSON is faster than XML due to it being smaller in size.

The benefit becomes apparent when the data accessed become

larger as observed on 84 traces bar at Figure 10. In test case 3,

1 datum and 1 trace were from aforementioned trace number

29 whereas 84 traces consisted of actual traces contributed by

359

Fig. 10. Test case 3 result

Fig. 11. Test case 4 result

users on various bus services across Singapore.

Test case 4 further affirmed the difference between JSON

and XML in terms of performance when the number of

concurrent API calls for 1 trace were increased. As seen on

Figure 11, latency for JSON remains lower than XML when

more API calls were executed concurrently.

VI. CONCLUSION

We designed and developed a participatory cyber physical

system in public transportation that firstly targets bus com-

muters. The system consists of two main platforms namely

SEP and AEP in which SEP serves data as an API or a

service to developers whereas AEP serves applications such as

ContriSense:Bus to public users. We also proposed NRTS and

S2B algorithms which complement GPS trajectory database

and MATE algorithm in actual public usage. S2B algorithm

has proved useful in translating bus spatial trajectory data

to correlated sequence of bus stops. Future works include

integrating closed-loop incentive scheme into the system to

valuate supply and demand, improving S2B algorithm so that

Kmax and Kmin are adaptive, and introducing load balancing

into the system for better scalability.

ACKNOWLEDGMENT

The authors would like to thank M.T. Maung, K.S. Ang,

T.D. Tran, James Lim, and Bin He for their contributions in the

system development. Support from A*STAR SERC Singapore

grant is gratefully acknowledged.

REFERENCES

[1] S. Solomon, G.-K. Plattner, R. Knutti, and P. Friedlingstein, “Irreversible
climate change due to carbon dioxide emissions,” Proceedings of the
National Academy of Sciences, 2009.

[2] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
transit tracking using smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’10.
New York, NY, USA: ACM, 2010, pp. 85–98.

[3] L. Richardson and S. Ruby, RESTful Web Services, 1st ed. California:
O’Reilly Media, 2007.

[4] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” in ACM SenSys’06 World
Sensor Web Workshop, Boulder, Colorado, October 2006.

[5] E. A. Lee, “Cyber-Physical Systems - Are Computing Foundations
Adequate?” in Position Paper for NSF Workshop On Cyber-Physical
Systems: Research Motivation, Techniques and Roadmap, 2006.
[Online]. Available: http://chess.eecs.berkeley.edu/pubs/329.html

[6] H. Zhuge, “Semantic linking through spaces for cyber-physical-socio
intelligence: A methodology,” Artificial Intelligence, vol. 175, no. 5-6,
pp. 988 – 1019, 2011, special Review Issue.

[7] E. Agapie, G. Chen, D. Houston, E. Howard, J. Kim, M. Y. Mun,
A. Mondschein, S. Reddy, R. Rosario, J. Ryder, A. Steiner, J. Burke,
E. Estrin, M. Hansen, and M. Rahimi, “Seeing our signals: combin-
ing location traces and web-based models for personal discovery,” in
Proceedings of the 9th workshop on Mobile computing systems and
applications, ser. HotMobile ’08. New York, NY, USA: ACM, 2008,
pp. 6–10.

[8] E. Lu, W.-C. Lee, and V. Tseng, “Mining fastest path from trajectories
with multiple destinations in road networks,” Knowledge and Information
Systems, pp. 1–29.

[9] M. Kim, M.-O. Stehr, J. Kim, and S. Ha, “An application framework
for loosely coupled networked cyber-physical systems,” in Embedded
and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International
Conference on, dec. 2010, pp. 144 –153.

[10] R. K. Ganti, Y.-E. Tsai, and T. F. Abdelzaher, “Senseworld: Towards
cyber-physical social networks,” in Proceedings of the 7th international
conference on Information processing in sensor networks, ser. IPSN ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 563–564.

[11] T. S. Dillon, H. Zhuge, C. Wu, J. Singh, and E. Chang, “Web-of-things
framework for cyberphysical systems,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 9, pp. 905–923, 2011.

[12] A. Agarwal, M. Slee, and M. Kwiatkowski, “Thrift: Scalable
cross-language services implementation,” Facebook, Tech. Rep., April
2007. [Online]. Available: http://incubator.apache.org/thrift/static/thrift-
20070401.pdf

[13] Land Transport Authority. (2009) PUBLIC TRANSPORT @ SG.
[Online]. Available: http://publictransport.com.sg/publish/ptp/en.html

[14] National University of Singapore. (2009) Transport Services. [On-
line]. Available: http://www.nus.edu.sg/oed/services/transport/shuttle-
bus-services.htm

[15] (2011) ContriSense:Bus - Android Market. [Online]. Available:
https://market.android.com/details?id=com.contribus

[16] Fulmer, Jeffery. (2009) Joe Dog Software - Siege Home. [Online].
Available: http://www.joedog.org/index/siege-home

360

