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Abstract—Federated Learning (FL) is a distributed machine
learning technique that trains models on local devices to preserve
data privacy. In FL, evaluating model quality is crucial for de-
tecting malicious clients and improving model accuracy. However,
existing methods typically require a representative public testing
dataset on the server, which is often unavailable in practical
federated learning scenarios. To address this problem, we propose
a novel four-step framework, taking a crowdsourcing approach.
The basic idea is to distribute the model to be evaluated as
a task to a set of testing clients selected from the original
clients pool, who evaluate the model quality using their local
datasets. By consolidating these individual evaluations, we obtain
the overall model quality. To select a suitable number of testing
clients, we propose an exploration-exploitation-based framework.
Furthermore, to safeguard against attacks from potential ma-
licious testing clients, we introduce a Correlated Agreement
(CA) mechanism. This is achieved by comparing correlations of
accuracy among the same set of testing clients (who were selected
for the aforementioned evaluation task). Extensive experiments
demonstrate the effectiveness of our approach, which yields
accuracy comparable to methods that rely on a public testing
dataset on the server. Moreover, our approach can identify and
filter out dishonest testing clients and thereby ensure model
quality even in adversarial settings.

Index Terms—Federated learning, crowdsourcing, model test-
ing, correlated agreement.

I. INTRODUCTION

Federated Learning (FL) is a distributed machine learning
approach that aims to tackle data privacy and security concerns
using a decentralized framework [1–3]. Unlike conventional
machine learning techniques, which use centralized datasets
for training and pose risks associated with data transfer and
centralized storage, FL empowers edge devices to train models
using their respective local datasets. The training process
occurs locally on these devices (clients), eliminating the need
to transmit raw data to a central server. Each device updates the
model locally and shares the parameters with a central server,
aggregating them to generate a global model. Subsequently, the
global model is distributed back to the local devices, enabling
the repetition of the training process. By iteratively performing
these steps, FL achieves the aggregation of intelligence from
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distributed devices while preserving data privacy, making it
attractive for various applications [4–6].

In FL, the evaluation of model quality and accordingly, the
evaluation of client contribution, hold significant importance in
several aspects. First, they allow for the detection of malicious
clients which can intentionally provide incorrect updates or
tamper with the model. Identifying these malicious clients
by their model quality helps ensure the trustworthiness of
the model’s training process and results. Second, they are
essential for making informed decisions about its deployment
and potential improvements, such as incentive mechanism
design and determining when to terminate the training process,
preventing overfitting or unnecessary iterations. Thirdly, by
computing metrics such as accuracy, precision, and recall
values on the validation set, one can evaluate the quality of
the uploaded models of clients or the aggregated model in
FL. On top of these metrics, the contribution of each client
in FL can be accessed by Shapley value [7, 8]. This method
involves considering all possible combinations of participants
and evaluating their contributions by measuring the expected
marginal gain when they join the federation. Leave-One-Out
(LOO) [7] is a simpler approximate method to reduce the
complexity of Shapley value, which estimates the contribution
of each individual to the cooperative benefit by excluding it.

However, implementing the model evaluation in FL is
challenging in practice, due to the unavailability of a public
testing dataset, which is difficult to acquire due to the privacy
and security concerns in FL. Constructing a representative,
diverse, and accessible public testing dataset may harm clients’
privacy and result in sensitive information leakage, contrary
to the original intention of FL. Furthermore, some existing
approaches suggest the utilization of a small, rather than rep-
resentative, public testing dataset. However, when the dataset
size is limited, it may exhibit variations in data distribution and
features due to the heterogeneous nature of data distribution in
FL, which may significantly harm the performance of model
quality evaluation.

In this paper, we present a crowdsourcing-based framework
to tackle the issue of testing dataset construction by leveraging
the local datasets of individual users for distributing the model
and evaluating its accuracy. Furthermore, we consolidate these
individual accuracy evaluations to derive an overall model
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accuracy. We also address the challenge of ensuring the truth-
fulness of participating clients to provide genuine and high-
quality evaluations by introducing a reputation mechanism
based on the Correlated Agreement (CA) mechanism in the
evaluation process [9].

This paper makes the following contributions.
1. We propose a crowdsourcing framework for FL to per-

form model testing without a public test dataset by leveraging
the local datasets owned by individual FL clients. This is the
first work that introduces the use of crowdsourcing for FL
model testing. Not only does it overcome the lack of testing
sets in real-world scenarios of FL, but it also eliminates the
need for additional data transmission (in assembling a testing
set), thereby mitigating data privacy concerns and improving
communication efficiency.

2. We propose an exploration-exploitation-based scheme
under a stochastic optimization framework to address the
problem of selecting a suitable number of testing clients in
a stochastic optimization framework. By iteratively evaluating
the performance of different subsets of testing clients and
refining the selection, our scheme achieves an optimal trade-off
between exploring new clients and exploiting the information
gained from existing ones. This approach enables us to effi-
ciently utilize resources while maximizing the accuracy and
reliability of the evaluation process.

3. After selecting the appropriate number of clients, we
propose to utilize the CA mechanism to incentivize clients
to perform the crowdsourcing tasks honestly and with high
quality. This mechanism enables the detection and removal of
malicious clients from the evaluation process.

II. RELATED WORK

Our work is closely related to the research from two
branches: contribution evaluation in FL and FL with crowd-
sourcing.

A. Contribution Evaluation in Federated Learning

The effective evaluation of participant contributions in fed-
erated cooperation is a crucial issue for the practical appli-
cation and long-term advancement of FL. Prior research on
contribution evaluation in FL has explored various approaches,
including the Shapley value-based approach and the LOO
method [10]. In 1953, the Shapley value was proposed as
a solution to cooperative game problems where the Shapley
value of each participant is defined as its average marginal con-
tribution [11]. Recently, Shapley value has gained widespread
usage in evaluating the contributions of participants in FL.
Liu et al. [12] highlights that existing methods based on
Shapley value involve substantial computational costs, which
limits their practical applicability. To tackle this challenge,
they propose the GTG-Shapley approach which reconstructs
FL models using gradient updates instead of repetitive training
with various participant combinations. Another frequently uti-
lized method to evaluate participant contributions is the LOO
method, commonly used in statistical analysis and machine

learning, which has been adapted to assess individual con-
tributions in FL. For example, Wang et al. [7] proposed to
use LOO in FL by removing a participant from the entire
federated group and measuring the resulting loss in data value
as that participant’s contribution. These approaches rely on the
availability of a representative benchmark dataset within the
FL setting. Our work addresses this challenge by leveraging
the local datasets on each client and employing crowdsourcing
techniques. This approach enables the evaluation of client
contributions even when a benchmark dataset is not present.

B. Federated Learning with Crowdsourcing

FL itself can be viewed as a crowdsourcing process [13, 14],
as edge devices in FL have autonomy and contribute their own
data to the training process, resembling a form of crowdsourc-
ing. Previous research has focused on incentive mechanisms,
participant selection, and handling dishonest participants dur-
ing the model training process, treating it as a crowdsourcing
task. The classical FL framework in [1] is to involve a large
number of participants in the training process by aggregating
their local models or gradients to create a global model.
These collective efforts contribute to enhancing the overall
performance and generalization capabilities of the model.
Additionally, Pandey et al. [15] proposes a crowdsourcing
framework considering communication efficiency to address
the challenge of user participation in building a high-quality
global model in FL. Different from the above studies, we are
the first to consider the model testing phase as a crowdsourcing
task and investigate participant selection and detection of
dishonest participants in this context.

III. SYSTEM OVERVIEW

In this section, we present a framework consisting of a four-
step process for performing model testing. Figure 1 shows the
process of FL with crowdsourcing-based model testing.

A. Task Generation

The Leave-One-Out (LOO) method is utilized for generating
the model evaluation tasks, wherein the model is trained using
N clients, and upon completing the training process, we iterate
through each client’s model parameters and exclude them
individually. Subsequently, we aggregate the model parameters
contributed by the remaining clients. This iterative process
yields N+1 distinct models for comprehensive evaluation and
analysis, which includes a global aggregated model without
excluding any client. We note that our approach is a technique
for general distributed model testing scenarios, applicable to
any contribution evaluation method that requires model testing,
such as Shapley value-based approaches. We choose to adopt
the LOO method only for the sake of clarity in this paper.

B. Recruitment of Test Participants

An important challenge in this recuited process is the uncer-
tainty of the data quantity of local datasets available to each
test participant. The aim is to identify a minimized number of
participants to ensure that the combined local datasets suffi-
ciently meet the criteria for assessing the model’s accuracy.
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Fig. 1: The process of federated learning with crowdsourcing-
based model testing.

To tackle the above challenge, we employ an exploration-
exploitation approach: During the exploration phase, we ini-
tially recruit a random number of test participants. This allows
us to explore the range of dataset sizes and distributions
among the potential participants. Based on the insights gained
from the information about their dataset sizes, we transition
from the exploration phase to the exploitation phase. During
this phase, we strategically recruit additional test participants
which ensures that the recruited test participants collectively
provide a sufficient amount of data to accurately evaluate the
model.

C. Model Testing and Aggregation

After recruiting the testing population, the subsequent step
involves conducting model testing and aggregation. Each
testing participant is assigned a specific set of model tasks.
Utilizing their local datasets, they evaluate the assigned model
and provide individual assessments of its accuracy. To ensure
a fair and reliable aggregation of evaluations, a weighting
scheme is employed by taking into account the size of each
participant’s dataset to determine the weight assigned to their
evaluation.

D. Testing Quality Evaluation

The objective of this step is to ensure testing clients invest
genuine effort in accurately testing the model’s quality and
to detect clients who falsely report or conduct testing solely
on a subset of the dataset. To achieve this, we employ a
Correlated Agreement (CA) mechanism for evaluating and
motivating the clients. The CA mechanism calculates the
contribution of each client by measuring the correlation of
their test results on the same task. Based on the correlation
measure, the contribution of each client can be determined
for model aggregation or resource allocation purposes. This
method can detect the quality of model test results and is used

to exclude malicious testing clients and other untrustworthy
behaviors. We utilize this method to accomplish two tasks:
determining the probability of being selected for future tasks
and rewarding their contributions. By employing a correlation-
based mechanism, we can assess the reliability of testing
results of clients.

IV. METHODOLOGY

In this section, we present a detailed description of each
step in the framework and provide specific methods that meet
the requirements of the framework.

A. Task Generation

As mentioned above, to evaluate model quality, a LOO
approach is used to generate tasks. After the model training
in each round of FL, one client’s model is removed at a
time, and the remaining N − 1 clients’ models are aggregated
with weights based on their data size, resulting in N models.
Additionally, there is a globally aggregated model without
removing any client, so there are N + 1 models totally for
testing. This methodology enables the generation of multiple
tasks and the assessment of each client’s trained model quality.

B. Recruitment of Test Participants

How to determine the number of testing clients to recruit
for assessments of model quality is a crucial issue. We now
define the recruiting problem mathematically.

Definition 1 (Problem Statement): The objective is to deter-
mine the minimum number of testing clients n to recruit, such
that the probability that the total amount of data leveraged
by all testing clients is less than m is smaller than a given
threshold θ. Formally,

min n

s.t. P

(∑
i∈K

τi < m

)
≤ θ

|K| = n,

(1)

where K is the set of selected testing clients, τi represents the
amount of data used by testing client i to perform the model
testing task, and

∑
i∈K τi denotes the total amount of data

leveraged by all testing clients.
We assume that the random variable τi follows an identical

Gaussian distribution, i.e., τi ∼ N(µ, σ2), with the proba-
bility density function given by f(τ) = 1

σ
√
2π

e−
1
2 (

τ−µ
σ )

2

,
where σ is the standard deviation and µ is the mean. Let
Tn =

∑
i∈K τi denote the sum of n random variables τi. One

can establish that the sum of random variables induced by a
Gaussian distribution also follows a Gaussian distribution, that
is, Tn is characterized by a Gaussian distribution, specifically
Tn ∼ N(nµ, nσ2), where n is the number of selected testing
clients, µ and σ are the mean and the standard deviation as
given above, respectively.

To obtain an analytical solution to the above problem, we
can rephrase the constraint as follows:

Fnµ,nσ2(m) < θ, (2)
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where Fnµ,nσ2(·) represents the cumulative distribution func-
tion of the random variable Tn. The subscript nµ and nσ2

denote the mean and variance of the random variable Tn,
respectively. Since the mean µ and standard deviation σ remain
unchanged in the subsequent derivations, we omit them and
denote Fnµ,nσ2(·) as Fn(·) for simplicity. As n increases, it
can be easily proven that Fn(·) decreases. Therefore, we can
formulate the constraint (1) as follows:

n∗ = argmin
n

Fn(m) s.t. Fn(m) < θ. (3)

Next, we employ an exploration-exploitation approach to
obtain the expected value µ and variance σ of this distribution.

• Exploration: During the exploration phase, we randomly
select l testing clients and obtain information about the
amount of data they have collected, denoted as W =
{wi|i = 1, 2, ..., l}. Here, wi represents the number
of samples in the local dataset used by testing clients
i, which is reported by the testing clients themselves.
We assume that testing clients honestly report their data
amounts, which is a mild assumption because there is no
benefit to overstate the amount of data. Hence, the ex-
pected value of the reported data from the l testing clients
is µ =

∑l
i=1 wi

l , and the variance is σ2 =
∑l

i=1(wi−µ)2

l .
• Exploitation: After obtaining µ and σ in the exploration

phase, we can fit the cumulative distribution function
Fµ,σ(·). Then, we can use binary search to find the value
of n. As n increases, nµ and nσ2 also increase. By sub-
stituting these values into the constraint condition, we can
identify a threshold that satisfies the constraint, allowing
us to determine the required number of participants.

The exploration-exploitation phase occurs throughout the en-
tire FL process. For example, in an FL process consisting of
a total of R rounds, the first u rounds are exploration phases,
while the remaining R − u rounds are exploitation phases.
In the exploration phase, the data distribution of the testing
clients is learned, and in the subsequent exploitation phase,
the corresponding number of participants is selected based on
this distribution for testing purposes.

C. Model Testing and Aggregation
Each of the recruited testing clients is assigned a set

of model tasks generated in the first step and uploads the
corresponding model accuracies. We consolidate the accuracy
provided by the testing clients using a simple weighting
scheme. The weight assigned to each testing client is deter-
mined based on the data size of the datasets they contribute.
Let’s denote the set of weights for the N testing clients as
W = {wi | i = 1, 2, ..., N}. The weight assigned to the i-th
testing clients is denoted as λi, calculated as λi =

wi∑N
j=1 wj

.
Finally, we compute the overall accuracy, denoted as η, by
summing up the individual accuracies weighted by their λ
values: η =

∑N
i=1 λiηi.

D. Testing Quality Evaluation
We now introduce how to assess the quality of testing

clients’ execution of model testing tasks, to detect malicious

or low-quality testing clients. To address this issue, we employ
a scoring mechanism known as the CA mechanism. It involves
the following steps:

• Step D-1: We distribute a set of tasks T =
{ti|i = 1, 2, ..., x}, where each task represents the param-
eters of a model to be evaluated, to a group of testing
clients A = {ai|i = 1, 2, ..., k}. Each testing client ai
receives the complete group of tasks, and each task is
completed by different testing clients. Each testing client
ai tests the corresponding model parameters using their
local data and reports the model accuracy ηi.

• Step D-2: We define the correlation matrix ∆ as in [16]
and we utilize the received accuracy to calculate it. We
define ηip as the test result of testing clients ai on task
tp. The CA mechanism is built upon the ∆ matrix, which
describes the correlation between ηip and ηjp:

∆(ηip, η
j
p) = P (ηip, η

j
p)− P (ηip)P (ηjp). (4)

In Equation (4), P (ηip, η
j
p) represents the joint probability

of testing clients ai’s result ηip and another testing clients
aj’s result ηjp on the same task tp. P (ηip) and P (ηjp)
denote the marginal probabilities. When ∆(a, b) > 0, it
indicates a positive correlation between the two results;
if ∆(a, b) = 0, we have that a and b are independent;
otherwise, they are negatively correlated. Without loss of
generality, we assume that there is at least one element
in the matrix that is non-zero. The scoring function S(·)
is defined as follows:

S(a, b) =

{
1,∆(a, b) > 0

0,∆(a, b) ≤ 0.
(5)

To illustrate the idea of delta matrix ∆ more clearly, one
can consider a 100 × 100 matrix representing accuracy
levels from 1% to 100%. Then we can obtain a delta
matrix ∆ with the size of 100 × 100. For example, a
common S(·) in practice could be

S(·) =


1 1 1 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 1 1

 ,

which means that two clients are more likely to report
close accuracy for the same task.

• Step D-3: Next, with a given delta matrix ∆, we describe
the classical CA method introduced by [17] for our set-
ting. We put the pseudocode to calculate the contribution
of each client in Algorithm 1. We use Qi

p to represent
the contribution of testing clients ai to task tp:

Cij
p = S(ηip, η

j
p)− S(ηiq, η

j
z), (6)

where ηip denotes the accuracy of the client i for task p.
• Step D-4: We sum up the total contribution value of

each client to the whole task set as her contribution, then
we can establish a threshold value, denoted as T . If the
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Algorithm 1 Correlated Agreement (CA) Mechanism

Input: The set of selected users K, a set of task Z, the number
of peers m and the delta matrix ∆.

Output: The contribution Qi of each user ai ∈ Kt.
1: for each user i ∈ K do
2: Dj ← a set of randomly selected m testing clients as

peers;
3: for each task tp in Z do
4: for each peer client aj ∈ Di do
5: Calculate ηip ,ηjp for ai and aj on task tp;
6: Calculate ηiq for ai on task tq and ηjz for aj on
7: task tz;
8: Cij

p ← S
(
ηip, η

j
p

)
− S

(
ηiq, η

j
z

)
;

9: end for
Repeat Lines 3 - 8 for each task;
Qi

p ← 1
|Di||P |

∑
p∈P

∑
j∈Di Cij

p .
10: end for
11: end for

contribution value of a client falls below this threshold,
we classify the client as a “bad client” and exclude
the accuracy calculated by this client from the accuracy
aggregation process.

V. PERFORMANCE EVALUATION

A. Experimental Setting

In our study, we evaluate the performance of our method us-
ing CIFAR-100 dataset [18]. CIFAR-100 is a classic computer
vision dataset used for image classification tasks. It consists
of 100 categories of colour images, with 600 images per
category. These categories are divided into 20 superclasses,
each containing 5 subclasses. The CIFAR-100 dataset was
created to evaluate the performance and robustness of image
classification algorithms, and it has been widely applied in
machine learning research.

For the training model, we follow a similar approach as
described in [19] by employing a simple Convolutional Neural
Network (CNN) with two convolutional layers, one pooling
layer, and three fully connected layers. Among them, the
learning rate is 0.01, the local epoch is 50, and the local batch
size is 5.

We establish a pool of 370 clients and allocate 60,000 data
points from CIFAR-100 among these clients. Each client’s data
is further divided into a training set and a testing set while
guaranteeing that there is no overlap between the two sets.
The data distribution adheres to a Dirichlet distribution [20]
with parameters α = 0.1 and β = 0.7, where α controls the
amount of data allocated to each client, and a larger α value
makes the distribution more concentrated and peaked. β affects
the number of sample categories assigned to each client, and
a larger β value indicates a smaller difference in the number
of sample categories assigned to each client.

Furthermore, we designate a global training dataset of
50,000 images and a testing dataset containing 10,000 images.

From the pool of clients, we select 18 of them as train-
ing clients. Employing the leave-one-out method, we iterate
through each client’s trained model parameters, excluding one
client’s model from the aggregation at a time. This iterative
process generates a total of 19 tasks (including the globally
aggregated model without excluding any client).

B. Experimental Results

We conduct the following two experiments to validate the
effectiveness of our approach:

Firstly, we conduct FL for a total of 50 rounds, divided
into an initial exploration phase of 25 rounds followed by an
exploitation phase of 25 rounds. During the exploration phase,
we randomly select an integer between 1 and 40 to determine
the number of testing clients included in each round. The mean
value µ of the clients’ data amount is calculated to be 27.212,
with a variance value σ of 8.522. These values are utilized
to derive the truncated normal distribution function, equation
(3), which guides the selection of testing clients based on their
data characteristics. By utilizing the binary search method
with m = 5000 and θ = 0.1, we obtain that the minimum
value of n is 171. Therefore, during the remaining 25 rounds,
we select 171 testing clients for evaluation purposes. In each
round, the training clients utilize the global training dataset for
training, while the testing clients use their local testing set for
evaluation. The model accuracies are then consolidated, taking
into account the weights assigned based on the respective
client’s data size. This process generates a list of model
accuracies. To compare this list of model accuracies with
the ground truth, i.e., the list of accuracies generated from
a public testing dataset, we employ metrics including the
Pearson correlation coefficient [21], Euclidean distance [22],
and cosine similarity [23]. These metrics provide insights
into the similarity or dissimilarity between the two sets of
accuracies.

Figure 2 depicts the trends of the Pearson correlation
coefficient, Euclidean distance, and cosine similarity between
the two accuracy lists generated by our approach and the
one with a public testing dataset during the exploration and
exploitation phases. Figure 2(a) represents the Pearson corre-
lation coefficient, which ranges from -1 to 1. A value closer
to 1 indicates a stronger positive correlation between the two
lists. It can be observed that during the exploration phase,
the Pearson correlation coefficient fluctuates significantly due
to the random selection of testing clients. However, during
the exploitation phase, the coefficient stabilizes around 0.9.
Figure 2(b) illustrates the Euclidean distance, which takes non-
negative values. A smaller value indicates a closer distance
between the points. Figure 2(c) represents the cosine similarity,
ranging from -1 to 1. A cosine similarity close to 1 indicates a
small angle between the two vectors, implying a high degree
of similarity in direction. These trends indicate the feasibility
of using individual testing datasets instead of a public testing
dataset.

Secondly, assuming the presence of malicious clients during
the exploitation phase, we randomly select 5 testing clients
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(a) Pearson correlation coefficient (b) Euclidean distance (c) Cosine similarity

Fig. 2: Correlation between model accuracies with and without a common testing set during the exploration-exploitation process.

Fig. 3: Pearson correlation coefficients with and without CA
method in the presence of malicious testing clients.

as malicious clients. These clients conduct dishonest behavior
by adding Gaussian noise to their reported accuracies. The
added noise follows a Gaussian distribution with a mean of
0 and a standard deviation of 0.2. We establish a 100 × 100
pentadiagonal matrix as the ∆ matrix in CA. Each testing
client randomly selects 5 other clients as its peer clients.
By applying the lookup table, we compute the contribution
values for each testing client according to Equation (6). We
then set a threshold of 2.5, considering any client with a
contribution value below this threshold as a malicious client.
During the accuracy aggregation process, these identified
malicious clients are excluded. Subsequently, we compare
the Pearson correlation coefficient between the accuracy lists
obtained by using the CA approach (with the malicious clients
removed) and the accuracy lists obtained without removing
malicious clients. This comparison allows us to assess the
similarity between the two sets of accuracies and evaluate
the effectiveness of using the CA approach in mitigating the
impact of malicious clients.

Figure 3 illustrates the variation range of Pearson correlation
coefficients whether the bad testing clients are excluded by
this method. The first 10 rounds are designated as the ex-
ploration phase, while the remaining 30 rounds represent the
exploitation phase. During the exploitation phase, the Pearson
correlation coefficients obtained with CA exhibit clearly higher
values compared to those without CA, where the testing clients
with added noise are retained. This indicates the effectiveness
of detecting malicious clients with the CA method.

VI. CONCLUSION

In this paper, we propose a novel approach for model
testing in FL without the need for a public testing dataset.
It leverages the power of crowdsourcing by taking advantage
of the local datasets held by the FL clients themselves, while
taking a cross-validation approach. Furthermore, our method
incorporates a CA mechanism to detect malicious clients and
thereby enhances robustness. Through extensive experiments,
we demonstrate the effectiveness of our proposed method
which yields accuracy comparable to methods that rely on
a public testing dataset on the server.
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