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Abstract—This appendix provides the mathematical proofs for [1]. Last revised on September 26, 2015.

1 PROOF OF LEMMA 1

Proof. Existence:
The existence proof parallels [2] (Theorem 2) where the
assumptions are:

(i) IPV model: the player types (e.g., values of prize) are
independent and private;

(ii) Common support: all players share the same interval of
types, [v, v];

(iii) Properties of distribution: all c.d.f. F}’s are continuous
over the closed interval [v, 7] and differentiable over the
half-open interval (v, 9], and all p.d.f. f;’s are bounded
away from zero over (v, 7];!

(iv) Mass at the lower extremity: either (a) there is no mass
atv, ie., F;(v) = 0,Vi, or (b) F;(v) > 0 and F; is right-
hand differentiable at v and f;(v) is bounded away
from zero for all v € [v, 7], Vi.

Our model obeys all these assumptions. Moreover, we con-
jecture that the existence of equilibria in first-price auctions
is reciprocal to the existence of equilibria in all-pay auctions,
provided that all the assumptions are the same except for
the auction institution. (However, monotonicity does not
inherit this reciprocity and we need to reconcile a difference
in utility functions; see next.)

Monotonicity:

The monotonicity proof follows [3] (Proposition 1), but to
apply that result we need to reconcile a difference between
first-price and all-pay auctions. In first-price auctions, the
payoff of a bidder i is zero when his bid is unsuccessful, but
in all-pay auctions, it is negative. Therefore, we will use a
“modified” utility function, i;, by adding back the negative
component (i.e., payment) to the original utility function, u;,
as

Furthermore, note that the utility referred to by [3] is ac-
tually the utility when a bidder wins the auction, not the
expected utility that is commonly used and that involves
a winning probability. Therefore, we end up using the
following modified “winning” utility function:

u

win
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= u"™ + p(bi, vi),
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where u™" is the original utility when agent i wins the
contest, and is thus V' (v;, Z;(b;)) — p(b;, v;). Hence, 4"
V(vi, Zi(b;)). Now, in order to apply the result of [3] we
need to verify whether 4" satisfies the weak supermodular-

ity which is defined as

2,,Win (. i .
8 ui (blvvlav—z) > O,
0b;0v; -

Vi, Vv = (v;,v_;).

It is reasonable to assume that the value function of a
prize, V (v, Z), satisfies % > 0 (higher prize implies
more value) and W > 0 (higher type is able to derive
more value from the same prize). Further, we assume that
%{;}Z) > 0 which means that, as prize increases, the value
that a higher type is able to derive from the prize increases
in a faster speed than the prize; in other words, if the prize
increases linearly, then a higher type can gain value in a
super-linear manner.? In addition, since Z’(b) > 0 which is
self-explanatory (higher bids should deserve higher prize),

we now have

PV (vi, Zi(bi)) _ 0V (v, Zi(bi)) dZ;

> 0.

This means that """, which derives from our utility func-
tion, is weakly supermodular. The monotonicity of equilib-
rium thus follows from [3] (Proposition 1).

Uniqueness:

The uniqueness proof is analogous to [4] (Theorem 1)
as a special case of possibly different type supports. Four
assumptions need to be verified against: the first two are (i)
and (iii) in the existence proof above (IPV and distribution
function), the third is F;(c) = 0, i.e., there is no mass point at
the lower extremity (the case with mass point, i.e., F;(c) >
0, and common support also admits a unique equilibrium,
as proved in [2]%). The fourth and last assumption is that

2. This is certainly feasible in practice. For example, a higher prize
enables a stronger winner to invest in a wider portfolio with super-
linear return, or to attract much larger attention from the media. In fact,
one could draw an analogy here to the well-known Mathew effect, “the
rich get richer and the poor get pooer’.

3. Uniqueness in the case with a mass point was also proved by [5]
and [6]. However, [4] points out that both [7]—an early version of [5]—
and [6] contain an error in their proofs.



there exists a 6 > 0 such that Fj is strictly log-concave over
(v,v+9).4

As our model obeys the first three assumptions, we only
need to limit our c.d.f. F;’s to those that satisfy the log-
concavity. This means that In F; must be strictly concave,
or f;/F; is strictly decreasing. Nevertheless, this additional
condition is not restrictive, as it is in fact common in eco-
nomic theory (see [8] and [9]), and as an example, both uni-
form and exponential distributions are log-concave. Also,
note that it only requires F; to be “locally” log-concave, i.e.,
near the lower extremity v and not over the entire support.

Common (bid) support:

Given that the agent types have a common and nonneg-
ative support, [v, 7], all the agent in our contest will bid in
the range [0, b]. This follows from combining Lemma 1 and 4
of [10] where the argument of the two lemmas holds for the
n-player case. Alternatively, this can also be proved using
Lemma 10 and 11 of [5] but with a few additional steps for
verifying against the assumptions therein. O

2 PROOF OF LEMMA 2

Proof. In equilibrium, each agent takes the best response
which maximizes his utility u; (3), and hence b; is also
the solution to the optimization problem maxp, u;. Thus we
invoke the envelope theorem [11] on (3) with respect to v;
and obtain

Ou;
Ui / vza HF vj p;(b’mvz)
6’01 i *
= ua(s) = wi(w) + / Vi, i, Zio) TT By o
L J#i

— pl, (br, m)} d;. (A1)
Since an agent with the lowest possible type never wins the
auction, he will bid zero (i.e., exert no effort) in an all-pay
auction (rather than bidding b; = v as in first or second-
price auctions). As a result, he reaps zero utility, i.e., u;(v) =
0. Thus, equating the rh.s of (A.1) to that of (3) yields the
result. O

3 PROOF OF COROLLARY 1

Proof. Apply Lemma 2 with V(v,Z) = h(v)Z. Note
that Lemma 2 is derived from maxp, u;, or equivalently
arg maxg. ;. When V(v,Z) = h(v)Z, it can be rewritten
as arg max, h( — for v; > 0. By spelling this out, we have

arg max Z;(b;) H Fj(vj(b;
b, by
: J#i

— p(bi, vi). (A.2)

Therefore, when dealing with u;, we can simultaneously
treat V (v, Z) as Z and p(-) as p(-), thereby obtaining the
result (5) from Lemma 2, where Zi;i(bi) = 0 due to the
envelope theorem. O

4. We have tailored this last assumption to our model. In detail, since
our model essentially admits a reserve price of zero and adopts a com-
mon type support, two of the three “or” conditions (i-iii) postulated by
[4, Theorem 1] are violated, and hence we must satisfy the remaining
assumption (iii) therein which is the log-concavity stated here.

4 PROOF OF THEOREM 1
Proof. We begin by expanding the principal’s expected profit
(2). First, the revenue portion can be expanded as

b} = Z/ b (v;) dF; (vy).

Second, the prize portion can be expanded using the law of
total expectation, as

E [V()\, Zw(bw))] =

>E[Zqz-zz-<bi<vi>>}
Z/ Z;(bi(vy) HF vj

J#i

) dF; (vs).
Therefore,
T = Z [ ’ [b v
Zi(bi(vi)) [ F(v; (b

i
With Corollary 1, substituting (5) into (A.3) yields

ﬂ'zzi:/vv[b v

D] dFi(w). (A3

— h(N)p(bi, v;)

+ h(A) /”i P, (bi, 03) d@z} dF;. (A4)

v

Integrating the last term by parts,

i), 0;) do; dF;

/
v v DY, f i

which gives (8) by substituting itself back into (A.4).

Completing the proof of (8) requires solving b;. Con-
sider the principal’s optimization problem, maxz 7 (8). It
is equivalent to maxy 7 because the principal is using an
optimal prize tuple Z to essentially induce the optimal effort
vector b which, consequently, leads to the maximum profit.
Furthermore, in (8) we have decoupled each agent ¢ from
other agents j # ¢. Therefore, maximizing 7 can be achieved
by maximizing each individual integrand I; over b;, where

. 1-F;

fi
Applying the first order condition to I; with respect to b;
gives
ol;
ob;

which proves (7).
To verify that I; has an unique maximizer, we examine

8212' ~ N 1-— Fz
8b¢2 - 7h(>\)p;)/2(b“vl) +h()‘) /H (blvvz) fz .

Since p = p/h(v), and v > 0 is treated as constant due to the
use of envelope theorem, our assumptions on p(-) also hold

1-F

—1—h(\) ;

ﬁ;l (b27 U’i) + h()‘)ﬁg“vl (bia Ui) = 07




for jp(-), i.e., pj> > 0 and ﬁ;féw < 0. Since h(A) > 0 for A > 0,
therefore I/ <'0. Thus I; is strictly concave, and hence b; as
given by (7) exists and is unique.

Finally, to prove the optimal prize tuple (6), given that b;
is solved, we rearrange (5) and change the variables thereof
from v; to b;. The lower limit of the integral is 0 because
bi(v) = 0 as the lowest-type agent will bid zero in an all-
pay auction (cf. proof of Lemma 2). O

5 PROOF OF PROPOSITION 1

Proof. Notice that the expression under maximization in
(A.2) is u;/h(v;). Thus it follows from (5) that

(R RV
h(Ul> - /E pvi (blﬂvl)dvl
Yi py, (bi, D)0 (0;) — p(bs, 0;) B ()
== (o) | R2(5)

dv;.

According to Lemma 1, the equilibrium is strictly mono-
tone and type v will bid zero. Therefore, b;(v;) > 0 for any
v; > v. Since p(0,v) = 0 and p},(b,v) > 0, thus p(b,v) > 0
for any b > 0. Similarly, since h'(v) > 0 and h(0) = 0
(Section 4.2), h(v) > 0 for any v > 0. In addition, we know
that pl,(b,v) < 0. Therefore, u; > 0, which proves IR, and
the equality holds iff v; = v (Where v > 0). Since an agent of
type v will choose not to participate (b; = 0), any agent who
exerts nonzero effort reaps a strictly positive payoff. O

6 PROOF OF PROPOSITION 2

Proof. The existence and uniqueness are due to Lemma 1.°
To solve for the equilibrium strategy b = (b1, bs), first write
agent i’s utility below, where we recall that v;(-) := ;' (-),

ur = Fy(va(b1))orZ — p(ba),
U = Fl(’()l(bg))ng - p(bg).
To maximize u;, applying the first-order condition yields
Ou1/0br = Fy(va(b1))vy(b)viZ —p'(b1) =0,  (A6)
8u2/8b2 = F{(Ul(bg))vll(bQ)’UQZ —p/(bg) =0. (A7)

In (A.7), treat by as a parameter and substitute it by b;, and
meanwhile notice that vo = v2(bs). Then we have

FY(v1(b1))vy (b1)va(b1)Z = p' (b). (A.8)

Define k(v1) := va(b1(v1)) = B5 ' (b1(v1)), in the spirit of
[10]. Thus

K (v1) = v5(by (v1))b] (v1).
The first term on the r.h.s. equals, according to (A.6),

p'(b1) p'(b1)
U/Q(bl(vl)) = F/( b = v .
p(v2(b1(vi)))v1Z  Fy(k(v1))vnZ
The second term can be rewritten firstly using the theorem
of derivative of inverse function, and secondly (A.8), as
follows:

by(v1) =

(A.9)

1 _ F{(vl)vg(bl)Z _ F{(vl)k(vl)Z

vi(bi(vr)) — p(by) p'(b1)
(A.10)

5. Alternatively, the existence can be attributed to [10, Theorem 1]
and the uniqueness to [5, Proposition 1].

Therefore, (A.9) equals, by replacing v; with v,
Fi(v)k(v)
/ _ 1
O Gy

Agent 1’s equilibrium strategy can now be solved via
(A.10):

(A.11)

P (b1)by (v1) = ply, (b1 (v1)) = Fi(v1)k(v1)Z
= bi(vy) =p~ (Z /kl(v) F(v)k(v) dv)

where k(v) is determined by (A.11). Using k~!(v) instead
of v as the lower limit of integral is to ensure k(v) to
be differentiable (cf. (A.9)) as k(-) essentially maps the
support of v; to that of vs. In addition, using v in k~1(-)
is because the equilibrium strategy is monotone increasing
(cf. Lemma 1).

Agent 2’s equilibrium strategy is then solved by the
definition of k(-), as

Ba(k(v1)) =bi(v1) = ba(va) = bi(k™ " (v2)).

The boundary condition k(7) = ¥ can be proved us-
ing Lemma 1 as follows. Since the common support of
equilibrium bids is [0,b] and the strategy is monotone
increasing, by (v) = b. Furthermore, the inverse function
of the strategy is also monotone increasing, and hence
B3 (b) = ©. Therefore, it follows from the definition of k()
that k(0) = 85 ' (b1 () = ©. O

7 PROOF OF PROPOSITION 3
Proof. The utility of an agent of type v is

u=vZF" " (v) — p(b).

To maximize u, applying the first-order condition with
respect to b, and noting that the inner v is actually v(b),
give

dFt(v) 1 '(b) =
e R
= p/ (b)V' (v) = p, (b(v)) = vZ sziv(v)

— p(b(v)) = Z/ EAFPL = ZeFnl - Z/ PPl dt

v v

= b(v) =p~! (vZF" " (v) - Z / i) t).

v
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