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Appedix: Mathematical Proofs for
“Incentive Mechanism Design for Heterogeneous

Crowdsourcing Using All-Pay Contests”
Tie Luo

Abstract—This appendix provides the mathematical proofs for [1]. Last revised on September 26, 2015.

✦

1 PROOF OF LEMMA 1
Proof. Existence:

The existence proof parallels [2] (Theorem 2) where the
assumptions are:

(i) IPV model: the player types (e.g., values of prize) are
independent and private;

(ii) Common support: all players share the same interval of
types, [v, v̄];

(iii) Properties of distribution: all c.d.f. Fi’s are continuous
over the closed interval [v, v̄] and differentiable over the
half-open interval (v, v̄], and all p.d.f. fi’s are bounded
away from zero over (v, v̄];1

(iv) Mass at the lower extremity: either (a) there is no mass
at v, i.e., Fi(v) = 0,∀i, or (b) Fi(v) > 0 and Fi is right-
hand differentiable at v and fi(v) is bounded away
from zero for all v ∈ [v, v̄], ∀i.

Our model obeys all these assumptions. Moreover, we con-
jecture that the existence of equilibria in first-price auctions
is reciprocal to the existence of equilibria in all-pay auctions,
provided that all the assumptions are the same except for
the auction institution. (However, monotonicity does not
inherit this reciprocity and we need to reconcile a difference
in utility functions; see next.)

Monotonicity:
The monotonicity proof follows [3] (Proposition 1), but to

apply that result we need to reconcile a difference between
first-price and all-pay auctions. In first-price auctions, the
payoff of a bidder i is zero when his bid is unsuccessful, but
in all-pay auctions, it is negative. Therefore, we will use a
“modified” utility function, ûi, by adding back the negative
component (i.e., payment) to the original utility function, ui,
as

ûi = ui + p(bi, vi).

Furthermore, note that the utility referred to by [3] is ac-
tually the utility when a bidder wins the auction, not the
expected utility that is commonly used and that involves
a winning probability. Therefore, we end up using the
following modified “winning” utility function:

ûwin
i = uwin

i + p(bi, vi),
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1. That is, there exists some δ > 0 such that fi(v) > δ for all v ∈
(v, v̄].

where uwin
i is the original utility when agent i wins the

contest, and is thus V (vi, Zi(bi)) − p(bi, vi). Hence, ûwin
i =

V (vi, Zi(bi)). Now, in order to apply the result of [3] we
need to verify whether ûwin

i satisfies the weak supermodular-
ity which is defined as

∂2uwin
i (bi, vi, v−i)

∂bi∂vi
≥ 0, ∀i,∀v = (vi, v−i).

It is reasonable to assume that the value function of a
prize, V (v, Z), satisfies ∂V (v,Z)

∂Z > 0 (higher prize implies
more value) and ∂V (v,Z)

∂v ≥ 0 (higher type is able to derive
more value from the same prize). Further, we assume that
∂2V (v,Z)

∂v∂Z ≥ 0 which means that, as prize increases, the value
that a higher type is able to derive from the prize increases
in a faster speed than the prize; in other words, if the prize
increases linearly, then a higher type can gain value in a
super-linear manner.2 In addition, since Z ′(b) ≥ 0 which is
self-explanatory (higher bids should deserve higher prize),
we now have

∂2V (vi, Zi(bi))

∂bi∂vi
=

∂2V (vi, Zi(bi))

∂Zi∂vi

dZi

dbi
≥ 0.

This means that uwin
i , which derives from our utility func-

tion, is weakly supermodular. The monotonicity of equilib-
rium thus follows from [3] (Proposition 1).

Uniqueness:
The uniqueness proof is analogous to [4] (Theorem 1)

as a special case of possibly different type supports. Four
assumptions need to be verified against: the first two are (i)
and (iii) in the existence proof above (IPV and distribution
function), the third is Fi(c) = 0, i.e., there is no mass point at
the lower extremity (the case with mass point, i.e., Fi(c) >
0, and common support also admits a unique equilibrium,
as proved in [2]3). The fourth and last assumption is that

2. This is certainly feasible in practice. For example, a higher prize
enables a stronger winner to invest in a wider portfolio with super-
linear return, or to attract much larger attention from the media. In fact,
one could draw an analogy here to the well-known Mathew effect, “the
rich get richer and the poor get pooer’.

3. Uniqueness in the case with a mass point was also proved by [5]
and [6]. However, [4] points out that both [7]—an early version of [5]—
and [6] contain an error in their proofs.
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there exists a δ > 0 such that Fi is strictly log-concave over
(v, v + δ).4

As our model obeys the first three assumptions, we only
need to limit our c.d.f. Fi’s to those that satisfy the log-
concavity. This means that lnFi must be strictly concave,
or fi/Fi is strictly decreasing. Nevertheless, this additional
condition is not restrictive, as it is in fact common in eco-
nomic theory (see [8] and [9]), and as an example, both uni-
form and exponential distributions are log-concave. Also,
note that it only requires Fi to be “locally” log-concave, i.e.,
near the lower extremity v and not over the entire support.

Common (bid) support:
Given that the agent types have a common and nonneg-

ative support, [v, v̄], all the agent in our contest will bid in
the range [0, b̄]. This follows from combining Lemma 1 and 4
of [10] where the argument of the two lemmas holds for the
n-player case. Alternatively, this can also be proved using
Lemma 10 and 11 of [5] but with a few additional steps for
verifying against the assumptions therein.

2 PROOF OF LEMMA 2
Proof. In equilibrium, each agent takes the best response
which maximizes his utility ui (3), and hence bi is also
the solution to the optimization problem maxbi ui. Thus we
invoke the envelope theorem [11] on (3) with respect to vi
and obtain

∂ui

∂vi
= V ′

vi
(vi, Zi(bi))

∏
j ̸=i

Fj(vj(bi))− p′vi(bi, vi)

⇒ ui(vi) = ui(v) +

∫ vi

v

[
V ′
vi(ṽi, Zi(bi))

∏
j ̸=i

Fj(vj(bi))

− p′vi(bi, ṽi)
]
dṽi. (A.1)

Since an agent with the lowest possible type never wins the
auction, he will bid zero (i.e., exert no effort) in an all-pay
auction (rather than bidding bi = v as in first or second-
price auctions). As a result, he reaps zero utility, i.e., ui(v) =
0. Thus, equating the r.h.s of (A.1) to that of (3) yields the
result.

3 PROOF OF COROLLARY 1
Proof. Apply Lemma 2 with V (v, Z) = h(v)Z . Note
that Lemma 2 is derived from maxbi ui, or equivalently
argmaxbi ui. When V (v, Z) = h(v)Z , it can be rewritten
as argmaxbi

ui

h(vi)
for vi > 0. By spelling this out, we have

argmax
bi

Zi(bi)
∏
j ̸=i

Fj(vj(bi))− p̂(bi, vi). (A.2)

Therefore, when dealing with ui, we can simultaneously
treat V (v, Z) as Z and p(·) as p̂(·), thereby obtaining the
result (5) from Lemma 2, where Zi

′
vi(bi) = 0 due to the

envelope theorem.

4. We have tailored this last assumption to our model. In detail, since
our model essentially admits a reserve price of zero and adopts a com-
mon type support, two of the three “or” conditions (i–iii) postulated by
[4, Theorem 1] are violated, and hence we must satisfy the remaining
assumption (iii) therein which is the log-concavity stated here.

4 PROOF OF THEOREM 1
Proof. We begin by expanding the principal’s expected profit
(2). First, the revenue portion can be expanded as

E
[∑

i

bi
]
=

∑
i

∫ v̄

v
bi(vi) dFi(vi).

Second, the prize portion can be expanded using the law of
total expectation, as

E [V (λ, Zw(bw))] = h(λ)E
[∑

i

qiZi(bi(vi))
]

= h(λ)
∑
i

∫ v̄

v
Zi(bi(vi))

∏
j ̸=i

Fj(vj(bi)) dFi(vi).

Therefore,

π =
∑
i

∫ v̄

v

[
bi(vi)

− h(λ)Zi(bi(vi))
∏
j ̸=i

Fj(vj(bi))
]
dFi(vi). (A.3)

With Corollary 1, substituting (5) into (A.3) yields

π =
∑
i

∫ v̄

v

[
bi(vi)− h(λ)p̂(bi, vi)

+ h(λ)

∫ vi

v
p̂′vi(bi, ṽi) dṽi

]
dFi. (A.4)

Integrating the last term by parts,∫ v̄

v

∫ vi

v
p̂′vi(bi(ṽi), ṽi) dṽi dFi

=

∫ v̄

v
p̂′v(bi(vi), vi) dvi −

∫ v̄

v
Fi(vi)p̂

′
vi(bi(vi), vi) dvi

=

∫ v̄

v
p̂′vi(bi(vi), vi)

1− Fi

fi
dFi,

which gives (8) by substituting itself back into (A.4).
Completing the proof of (8) requires solving bi. Con-

sider the principal’s optimization problem, maxZ π (8). It
is equivalent to maxb π because the principal is using an
optimal prize tuple Z to essentially induce the optimal effort
vector b which, consequently, leads to the maximum profit.
Furthermore, in (8) we have decoupled each agent i from
other agents j ̸= i. Therefore, maximizing π can be achieved
by maximizing each individual integrand Ii over bi, where

Ii := bi(vi)− h(λ)p̂(bi, vi) + h(λ)p̂′vi(bi, vi)
1− Fi

fi
. (A.5)

Applying the first order condition to Ii with respect to bi
gives

∂Ii
∂bi

= 1− h(λ)p̂′bi(bi, vi) + h(λ)p̂′′bi,vi
(bi, vi)

1− Fi

fi
= 0,

which proves (7).
To verify that Ii has an unique maximizer, we examine

∂2Ii

∂bi
2 = −h(λ)p̂′′b2i

(bi, vi) + h(λ)p̂′′′b2i vi
(bi, vi)

1− Fi

fi
.

Since p̂ = p/h(v), and v > 0 is treated as constant due to the
use of envelope theorem, our assumptions on p(·) also hold
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for p̂(·), i.e., p̂′′
b2i

> 0 and p̂′′′
b2i vi

≤ 0. Since h(λ) > 0 for λ > 0,
therefore I ′′i < 0. Thus Ii is strictly concave, and hence bi as
given by (7) exists and is unique.

Finally, to prove the optimal prize tuple (6), given that bi
is solved, we rearrange (5) and change the variables thereof
from vi to bi. The lower limit of the integral is 0 because
bi(v) = 0 as the lowest-type agent will bid zero in an all-
pay auction (cf. proof of Lemma 2).

5 PROOF OF PROPOSITION 1
Proof. Notice that the expression under maximization in
(A.2) is ui/h(vi). Thus it follows from (5) that

ui

h(vi)
= −

∫ vi

v
p̂′vi(bi, ṽi) dṽi

⇒ ui = −h(vi)

∫ vi

v

p′vi(bi, ṽi)h(ṽi)− p(bi, ṽi)h
′(ṽi)

h2(ṽi)
dṽi.

According to Lemma 1, the equilibrium is strictly mono-
tone and type v will bid zero. Therefore, bi(vi) > 0 for any
vi > v. Since p(0, v) = 0 and p′b(b, v) > 0, thus p(b, v) > 0
for any b > 0. Similarly, since h′(v) > 0 and h(0) = 0
(Section 4.2), h(v) > 0 for any v > 0. In addition, we know
that p′v(b, v) ≤ 0. Therefore, ui ≥ 0, which proves IR, and
the equality holds iff vi = v (where v ≥ 0). Since an agent of
type v will choose not to participate (bi = 0), any agent who
exerts nonzero effort reaps a strictly positive payoff.

6 PROOF OF PROPOSITION 2
Proof. The existence and uniqueness are due to Lemma 1.5

To solve for the equilibrium strategy b = (b1, b2), first write
agent i’s utility below, where we recall that vi(·) := β−1

i (·),

u1 = F2(v2(b1))v1Z − p(b1),

u2 = F1(v1(b2))v2Z − p(b2).

To maximize ui, applying the first-order condition yields

∂u1/∂b1 = F ′
2(v2(b1))v

′
2(b1)v1Z − p′(b1) = 0, (A.6)

∂u2/∂b2 = F ′
1(v1(b2))v

′
1(b2)v2Z − p′(b2) = 0. (A.7)

In (A.7), treat b2 as a parameter and substitute it by b1, and
meanwhile notice that v2 = v2(b2). Then we have

F ′
1(v1(b1))v

′
1(b1)v2(b1)Z = p′(b1). (A.8)

Define k(v1) := v2(b1(v1)) = β−1
2 (b1(v1)), in the spirit of

[10]. Thus

k′(v1) = v′2(b1(v1))b
′
1(v1). (A.9)

The first term on the r.h.s. equals, according to (A.6),

v′2(b1(v1)) =
p′(b1)

F ′
2(v2(b1(v1)))v1Z

=
p′(b1)

F ′
2(k(v1))v1Z

.

The second term can be rewritten firstly using the theorem
of derivative of inverse function, and secondly (A.8), as
follows:

b′1(v1) =
1

v′1(b1(v1))
=

F ′
1(v1)v2(b1)Z

p′(b1)
=

F ′
1(v1)k(v1)Z

p′(b1)
.

(A.10)

5. Alternatively, the existence can be attributed to [10, Theorem 1]
and the uniqueness to [5, Proposition 1].

Therefore, (A.9) equals, by replacing v1 with v,

k′(v) =
F ′
1(v)k(v)

F ′
2(k(v))v

. (A.11)

Agent 1’s equilibrium strategy can now be solved via
(A.10):

p′(b1)b
′
1(v1) = p′v1(b1(v1)) = F ′

1(v1)k(v1)Z

⇒ b1(v1) = p−1
(
Z

∫ v1

k−1(v)
F ′
1(v)k(v) dv

)
where k(v) is determined by (A.11). Using k−1(v) instead
of v as the lower limit of integral is to ensure k(v) to
be differentiable (cf. (A.9)) as k(·) essentially maps the
support of v1 to that of v2. In addition, using v in k−1(·)
is because the equilibrium strategy is monotone increasing
(cf. Lemma 1).

Agent 2’s equilibrium strategy is then solved by the
definition of k(·), as

β2(k(v1)) = b1(v1) ⇒ b2(v2) = b1(k
−1(v2)).

The boundary condition k(v̄) = v̄ can be proved us-
ing Lemma 1 as follows. Since the common support of
equilibrium bids is [0, b̄] and the strategy is monotone
increasing, b1(v̄) = b̄. Furthermore, the inverse function
of the strategy is also monotone increasing, and hence
β−1
2 (b̄) = v̄. Therefore, it follows from the definition of k(v)

that k(v̄) = β−1
2 (b1(v̄)) = v̄.

7 PROOF OF PROPOSITION 3
Proof. The utility of an agent of type v is

u = vZFn−1(v)− p(b).

To maximize u, applying the first-order condition with
respect to b, and noting that the inner v is actually v(b),
give

vZ
dFn−1(v)

dv

1

b′(v)
− p′(b) = 0

⇒ p′(b)b′(v) = p′v(b(v)) = vZ
dFn−1(v)

dv

⇒ p(b(v)) = Z

∫ v

v
tdFn−1 = ZtFn−1|vv − Z

∫ v

v
Fn−1(t) dt

⇒ b(v) = p−1
(
vZFn−1(v)− Z

∫ v

v
Fn−1(t) dt

)
.
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