
Online Appendix to:
Incentive Mechanism Design for Crowdsourcing: An All-Pay
Auction Approach

TIE LUO, Institute for Infocomm Research, A*STAR
SAJAL K. DAS, Missouri University of Science and Technology
HWEE PINK TAN, Singapore Management University
LIRONG XIA, Rensselaer Polytechnic Institute

A. PROOF OF LEMMA 1

PROOF. Proving the existence of equilibrium, particularly for Bayesian games, is a
topic that has attracted tremendous effort from mathematicians and economists for
decades. Pertaining to our model, we provide three proofs below, from the simplest to
the most complex, leveraging three different pieces of prior art.

Proof A: Although the main result of Jackson and Swinkels [2005], Theorem 6, ap-
plies to our case, it requires a laborious process of verifying against ten assumptions. In-
stead, by comparing to the example auction (vi) in Section 3.3 of Jackson and Swinkels
[2005], which specifies a single-object all-pay auction with a standard set of basic auc-
tion rules, it is straightforward to verify that our model satisfies the rules. Thus, we
apply Theorem 2 therein and immediately proves the existence of equilibrium. To prove
the decreasing monotonicity, we note that the agent type in our case can be viewed as
the inverse of prize valuation. Then the result immediately follows from the increasing
monotonicity of a standard Bayesian game with agent type being valuation (which can
be found in any auction textbook, such as Krishna [2009]).

Proof B: We prove the result by finding a sufficient condition for the existence of
a symmetric and decreasing equilibrium, following the spirit of Krishna and Morgan
[1997] but dropping the assumption about type affiliation. To begin with, define xi :=
1/si to be each agent’s “inverse type,” and denote the corresponding agent belief by
FX (x) as compared to F(s), and bidding strategy by b(x) as compared to z(s). This leads
to an equivalent model to ours, and we proceed to prove the existence and increasing
monotonicity for this new model instead.

Consider an arbitrary agent i and define Y1 := max j �=i{xj}, which is a random
variable unknown to i. Define � : R

2 → R as �(x, y) := v(x, y) fY1 (y|x), where
v(x, y) := E[M(b)|xi = x, Y1 = y] is the expected prize value to i given that his (in-
verse) type is x and Y1 = y, and fY1 (y|x) is the density of Y1 given xi = x. This
is a rather general definition taking into account possible affiliation between agent
types. As our case conforms to an IPV model, the function � can be simplified to
�(x, y) = E[M(b)|xi = x] fY1 (y). As bid b(·) is increasing in type x [Krishna 2009], M(b)
is increases in x because a higher bid should lead to a higher prize. Therefore, �(x, y)
is increasing in x, and it then follows from Theorem 2 of Krishna and Morgan [1997]
that a symmetric equilibrium exists, which is the (implicit) solution to the equation

b(x) =
∫ x

−∞
E[M(b)|xi = t] fY1 (t) dt, (A.1)

where x = 1/s.
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Proof C: This proof is based on Theorem 7 in Athey [2001], which is further based
on Theorem 6 therein that states the following: a pure strategy Nash equilibrium
exists in increasing (in our case, decreasing) strategies if the auction game satisfies
the Spence-Mirrlees single-crossing property (SCC) and assumptions A1–A3 in Athey
[2001].

As our all-pay auction is under an IPV setting and bidders are (weakly) risk averse,
it satisfies SCC and A3 according to Theorem 7. Furthermore, as the strategy space of
each agent is continuous and bounded (for otherwise it will lead to negative payoff), we
are left with A1 and A2 to verify against.

In our model, the agent types have a joint density with respect to Lebesgue measure,
f ñ(s), that is bounded and atomless, where f (s) = F ′(s). Furthermore, because π̃i and
f (s−i) are bounded, the expected payoff πi = ∫

[s,s̄]ñ−1 π̃i(si, z∗
i , z∗

−i(s−i)) f (s−i) ds−i is finite
over the convex support [s, s̄]ñ−1 for all monotone (decreasing) functions z∗

j(sj), j �= i.
Thus, A1 is satisfied.

It is obvious that both the winner’s and the losers’ payoffs are bounded and contin-
uous. The continuum of strategy space also allows all the agents to have other options
besides their respective equilibrium strategies. In addition, bidding higher reduces the
gain from winning, while the gain is decreasing in agent type (which is marginal cost
in our case). Last, the slope (with respect to type) of the gain to winning, denoted by ρ
which is negative, is bounded away from zero, that is, ∃λ > 0 such that ρ ≤ −λ. Thus,
A2 is satisfied.

B. PROOF OF LEMMA 2

PROOF. Because each agent is playing her best response in equilibrium, her equi-
librium payoff π∗ is also the solution to the optimization problem maxz π (s, z). Fur-
thermore, π∗ is also an outcome of all agents playing equilibrium strategies, that is,
π∗ = π (s, z∗(s)). Therefore, we apply the envelope theorem [Milgrom and Segal 2002]
to (7) with respect to parameter s:1

∂π∗

∂s
= −P(s)

[
u′(α∗)h(z∗) − u′(−β∗)h(z∗)

] − u′(−β∗)h(z∗). (A.2)

Integrating the l.h.s. of (A.2) from s to s̄ leads to

∫ s̄

s

∂π∗

∂s
ds = π∗(s̄) − π∗(s) = −π∗(s).

Here, π∗(s̄) = 0 as is commonly assumed in the literature, based on the rationale
that the principal would like the highest-cost agent to reap zero surplus so that he is
indifferent to participating.

Also integrating the right-hand side of (A.2) from s to s̄, equals the negative left-hand
side of (8). Therefore, by noticing that π∗ = π (s, z∗), (8) is proved by combining with
(7).

1When applying the envelope theorem [Milgrom and Segal 2002] with respect to s, the strategy z∗ is treated
as fixed instead of a function of s, and the s in F(s) as inside P(s) (6) is treated as an inverse function of
z∗ and is hence also fixed; only the s incurring the true cost (as in h(z∗)s) is considered the true type and
differentiable.
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C. PROOF OF LEMMA 3

PROOF. Given a symmetric equilibrium of agent strategy profile z∗, the profit of the
principal (3) can be rewritten as

	(ñ, z∗) = ñ
∫ s̄

s
z∗(s) dF(s) − M

(
z∗(ñ)

(1)

)
. (A.3)

In equilibrium, the winner must be the agent of the lowest type (e.g., marginal cost),
that is, z∗(ñ)

(1) = z∗(s(ñ)
(ñ) ), where s(ñ)

(ñ) is the ñ-th order (minimum) of all the types. Its
distribution can be determined as

Pr
(
s(ñ)

(ñ) ≤ s
) = 1 − Pr

(
s(ñ)

(ñ) > s
) = 1 −

∏
i

Pr(si > s) = 1 − (1 − F(s))ñ,

where the last two steps are based on that agent types are independent and identically
distributed. Therefore,

M
(
z∗(ñ)

(1)

) =
∫ s̄

s
M(z∗(s)) d

[
1 − (1 − F(s))ñ] . (A.4)

Thus, we rewrite the expected profit (4) using (A.3) and (A.4) as

	∗ =
∑

n

npn

∫ s̄

s
z∗ dF −

∑
n

pn

∫ s̄

s
M(z∗(s)) d

[
1 − (1 − F)n]

=
∑

n

npn

∫ s̄

s

[
z∗ − M(z∗)(1 − F)n−1] dF.

D. PROOF OF THEOREM 1

The αrn and βrn in (15) contain M̊rn(·) and z̊rn, which are spelled out in (17) and (18),
respectively.

PROOF. Substituting (10) into (8) gives∫ s̄

s

[
εP(s1)

(
u′

1(α∗
rn) − u′

1(−β∗
rn)

) + 1 + εu′
1(−β∗

rn)
] × h(z∗) ds1

= P(s)M(z∗) + εP(s)
[
u1(α∗

rn) − u1(−β∗
rn)

] − β∗ + εu1(−β∗
rn),

⇒
∫ s̄

s
B∗(s1)h (z∗) ds1 = P(s)M(z∗) + A∗(s) − β∗ (A.5)

where

A∗(s) = εP(s)
[
u1(α∗

rn) − u1(−β∗
rn)

] + εu1(−β∗
rn),

B∗(s) = εP(s)
[
u′

1(α∗
rn) − u′

1(−β∗
rn)

] + εu′
1(−β∗

rn) + 1
(A.6)

are functions of s only, given z∗
rn and Mrn(·). Hence,

M(z∗(s)) = 1
P(s)

(
β∗ − A∗(s) +

∫ s̄

s
B∗(s1)h(z∗(s1)) ds1

)
. (A.7)
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Substituting (A.7) into (9) yields

	∗ =
∫ s̄

s

[
z∗ ∑

n

npn −
∑

n npn(1 − F)n−1∑
n pn(1 − F)n−1 ×

(
β∗ − A∗(s) +

∫ s̄

s
B∗(s1)h(z∗) ds1

)]
dF

=
∫ s̄

s

[
az∗F ′ − G′(s) (β∗ − A∗(s))

]
ds −

∫ s̄

s

[
G′(s)

∫ s̄

s
B∗(s1)h(z∗) ds1

]
ds,

where we note that z∗ is no longer a function of nas in the usual deterministic population
setting. Integrating the second term by parts leads to(

G(s)
∫ s̄

s
B∗(s1)h(z∗) ds1

) ∣∣∣s̄
s
−

∫ s̄

s
G(s)(−B∗(s)h(z∗)) ds =

∫ s̄

s
G(s)B∗(s)h(z∗) ds.

Thus,

	∗ =
∫ s̄

s

[
az∗F ′ − G′(s)(β∗ − A∗(s)) − G(s)B∗(s)h(z∗)

]
ds. (A.8)

Now, revisiting the principal’s objective, maxM(·) 	∗ (4), we note that choosing an opti-
mal prize function M(·) to (indirectly) maximize profit is essentially inducing an opti-
mal equilibrium strategy to (directly) maximize profit. Therefore, solving maxM(·) 	∗ is
equivalent to solving maxz∗ 	∗. Thus, denoting the integrand in (A.8) by γ , we write its
first-order condition (FOC), with respect to z∗ and fixing s, as

∂γ

∂z∗ = aF ′ − sG′(s)
dh(z∗)

dz∗ − G(s)B∗(s)
dh(z∗)

dz∗ = 0. (A.9)

From the above, we obtain (13) which is the (optimal) equilibrium strategy (and hence
we write z̊ in place of z∗, and B̊ in place of B∗).

Next in (A.7), replacing s by s̊(z), A∗ by Å, and converting the limits of integral from
s to z, lead to the optimal prize function (12).

Then, replacing z∗, β∗, A∗, B∗ in (A.8) with their corresponding optimal equilibrium
variables obtains the maximum profit (14).

In addition, for the solution to FOC (A.9) to exist and be unique, we require ∂2γ

∂z∗2 < 0,

which implies [G′(s)s + G(s)B∗(s)]h′′(z∗) > 0. Under weak risk aversion, ε 
 1, so
B∗(s) > 0. Furthermore, because G′(s) > 0 and G(s) > 0, it requires h′′ > 0 (a convex h(·)
implies that contributing at a higher level is more costly than at a lower level, which
is often the case in reality).

E. PROOF OF THEOREM 2

PROOF. Under weak risk aversion which subsumes risk neutrality, (8) can be rewrit-
ten as (A.5) (cf. proof of Theorem 1). Furthermore, we know that (8) is actually π∗(s)
(cf. proof of Lemma 2). Thus,

π∗(s) =
∫ s̄

s
B∗(s1)h(z∗(s1)) ds1.

Rearrange B∗(s), as defined in (A.6), as

B∗(s) = ε
[
P(s)u′

1(α∗
rn) + (1 − P(s))u′

1(−β∗
rn)

] + 1.
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For risk-neutral agents, B∗(s) = 1 because ε = 0. For weakly risk-averse agents, u′
1 >

− 1
ε
, and hence

B∗(s) > ε

[
− P(s)

ε
− 1 − P(s)

ε

]
+ 1 = 0.

Since h(z) > 0 if and only if z > 0, it holds for such agents that π∗ > 0 if only only
if z∗ > 0. That is, any such agent who contributes (any nonzero amount) will reap in
equilibrium strictly positive expected payoff.

F. A TECHNICAL LEMMA

This lemma is used by Appendix G.

LEMMA A (RN: EQUILIBRIUM STRATEGY). In an all-pay auction with incomplete informa-
tion and a stochastic population of risk-neutral agents, given a contribution-dependent
prize function Mrn(z), the equilibrium strategy z∗

rn(s) is determined by∫ s̄

s
h(z∗

rn(t)) dt = Mrn(z∗
rn)P(s) − h(z∗

rn)s. (A.10)

PROOF. Because z∗
rn = arg maxz πrn(s, z), it follows from (7) that

π∗
rn = Mrn(z∗

rn)P(s) − h(z∗
rn)s, (A.11)

where we have let u(x) = x due to risk neutrality. Further, because π∗
rn = maxz πrn(z),

we apply the envelope theorem to (A.11) and obtain ∂π∗
rn

∂s = −h(z∗
rn). Integrating both

sides and using the boundary condition (π∗
rn(s̄) = 0) lead to −π∗

rn(s) = − ∫ s̄
s h(z∗

rn(s1)) ds1.
Combining this with (A.11) proves (A.10).

Alternatively, we can prove the result using Lemma 2 as a shortcut. When agents
are risk neutral, we have u(x) = x, u′(x) = 1. Substituting this into (8) (in Lemma 2)
gives (A.10).

G. PROOF OF PROPOSITION 2

PROOF. Using Lemma A from Appendix F, substitute M0 for Mrn(·) in (A.10) and then
differentiate (A.10) with respect to s, yielding

−h(z∗
rn,con(s)) = M0 P ′(s) − h(z∗

rn,con) − s
dh(z∗

rn,con)
ds

∴
dh(z∗

rn,con)
ds

= M0
P ′(s)

s
.

Integrating both sides from s to s̄ gives

h(z∗
rn,con(s̄)) − h(z∗

rn,con) = M0

∫ s̄

s

P ′(s1)
s1

ds1,

which leads to (26) because h(z∗
rn,con(s̄)) = h(0) = 0.2
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