The 22nd International Conference on Pervaswe Computmg and Communlcatlons (PerGom 2024)

Computing 1

.7; Iyt A ) eomeirz - France

“Stitching Satellltes to the Edge Pervaswe and Efficient Federated
LEO Satellite Learning”

March 13, 2024, Biarritz, France

Mohamed Elmahallawy and Tie Luo

Computer Science Department, Missouri University of Science and Technology, USA

Missourt S&T | 158



Motivation Orbital Model Retraining
Low Earth Orbit (LEO) Satellite Networks

The recent surge of interest and investment in large- scale LEO satellites
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Motivation Orbital Model Retraining
Low Earth Orbit (LEO) Satellite Networks

Enable novel applications empowered by machine learning, such as:
— — Disaster Detection

|
5 petabytes of image data per day (2019)! _
[1] P. Wang, H. Li, B. Chen, and S. Zhang, “Enhancing earth observation throughput using inter-satellite communication,” IEEE Transactions
on Wireless Communications, vol. 21, no. 10, pp. 7990-8006, 2022 —e”



Motivation Orbital Model Retraining
Low Earth Orbit Satellite Networks

Conventional (i.e., centralized) ML.:

» Download high-resolution satellite images to a ground station (GS)

» Thisis impractical because:

= Bandwidth

» 50~500MB (vs. 5 petabytes satellite data!)

» Privacy

» Raw data transmission



Motivation JPersonalized Learning @ Orbital Model Retraining

Consequence of delay

a e/

e

e \wes

F\Q““n%g aiand (G Hurrlcane Watch: How Sat='" e e 2
migs ot Storms from Space Sa'ﬁe\“ ax
womhamras o i, g GO
\t
000060 anad |

This Suom! NPP satalite Infrared image was takel
of irma is visible with canvection around it. indicating an

Four—hour delay in downloading satellite images resulted in the burning of 135,000 acres and the loss of 50 lives?. o

1Campfire in Berkeley, California, in November 2018



Motivation @Personalized Learning [ Orbital Model Retraining

Introducing Federated Learning (FL) into LEO Networks
Satellite Edge Computing (SEC)

Model aggregation
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Challenges Orbital Model Retraining
Challenges in SEC

X Limited computation and storage

> LEO satellites cannot train large-scale ML models onboard

> Overlooked by existing FL-LEO literature

X Sporadic and irregular visibility pattern e ——

> The iterative FL process will converge after
several days or even weeks

300 600 900 1200 1500 18:00 2100 2Thu 300 600 900 1200 1500 1800 21:00 3Fri
Time (UTCG)
A visiting pattern over 2 days of a LEO network consisting of
11 satellites that communicate with a GS in Rolla, MO, USA



Contributions @ Personalized Learning J§ Orbital Model Retraining

Contributions

» We propose an innovative framework FL to enable satellite edge computing (SEC)

Personalized Learning
via Divide-and-Conquer

Enables satellites to train lightweight ML models, addressing the computation and
memory limitations.



Contributions @ Personalized Learning J§ Orbital Model Retraining

Contributions

» We propose an innovative framework FL to enable satellite edge computing (SEC)

Personalized Learning Orbital Model
via Divide-and-Conquer Retraining

Significantly reduces the number of communication
rounds to accelerate convergence



Contributions @ Personalized Learning J§ Orbital Model Retraining

Contributions

» We propose an innovative framework FL to enable satellite edge computing (SEC)

Personalized Learning Orbital Model 1
via Divide-and-Conquer Retraining H SEC Validation J

We build a testbed that emulates SEC to validate our proposed solution




System Model Orbital Model Retraining

= LEO satellites collaboratively train a global ML model to minimize the global loss as:
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Personalized Learning [@Osbital ModelRetraining

1. Personalized Learning via Divide-and-Conquer
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Converting multi-class classification problem into
binary classification

Before Training

Each satellite filters its collected images for a single
target class:

Dhltered {X |(X 7/) ED,,TF,( )_1}

This converts the original complex multi-class
problem into a binary classification problem.
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Each satellite trains a personalized ML model by

employing the one-vs-all strategy.



Orbital Model Retraining

2. Orbital Model Retraining
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= (Objective

Convert the binary classification tasks back to the original
multi-class problem

= Phasel:

Distribute global model to all satellites within each orbit
= Phase2

Sink satellite aggregates all binary models received from
satellites in the same orbit, forming an “orbital model”

= Phase3

Retrain the orbital model for several orbital rounds:
essentially FL in an extreme non-IID scenario
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Experimental Setup

WiFi Antennas

= LEO Satellite Network

» Two LEO networks of 60 satellites evenly distributed over 6 orbits, one
with inclination of 45° and the other 5 with inclination of 85°

» STK simulator was used to generate satellite visibility pattern

» Ground station is positioned in Rolla, MO, USA as the FL server

= Satellite Training (Testbed)
» Jetson Nano with NVIDIA Maxwell GPU to emulate each satellite

Power LED
> Dataset: EuroSat (high-resolution real-satellite images) containing 10 -

classes of land cover

Mouse+Keyboard
» Each satellite trains a VGG-16 model

Input Power  HDMI Cable to The Monitor

» Also uses MNIST, CIFAR-10, and CIFAR-100 datasets for comparison
with SOTA @



Evaluation

Results 1: Convergence
Comparing with SOTA Classification results (EuroSat)
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TABLE III: Comparison of convergence time and accuracy
under non-1ID settings (near-polar Constellation).

Predicatad: Resdentia

FL-LEO Accuracy (%) Convergence time (h) Ground Truth: Pasture Ground Truth: MerbaceousVegetaton  Ground Tnh: Sealake Ground Truth: AnnusiCrop Grownd Truth: PevmanentCrop
- Predicated: Fasture Fredicated: HerbaceousVegetation Predicated Sealake Predicated: AnnusiCrop Predicated: PermanentCrop
Approaches MNISTl CIFAR-10 I CIFAR-100 B
- FedAvg [3] 7941 70.68 61.66 60 (PS located anywhere)
= | FedISL [7] 82.76 73.62 66.57 8 (PS located at the NP)
9
£, | FedISL [7] 61.06 52.11 47.99 72 (PS located anywhere)
“ NomaFedHAP [8] [ 82.73 77.36 62.81 24 (PS located anywhere) Ground Truth: AnnuaCre Ground Truth; Forest Ground Truth: AMnusICrop Ground Truth; HerbaceousVegetation | Grou
Predicoted: An Crop Predicated Forest Predicated: AnnualCrop  Predicated: HerbacoousVepetation
ﬁ FedAsync [25] 70.36 61.81 56.37 48 (PS located anywhere)
:‘;‘:’ FedSpace [6] 52.67 39.41 36.04 72 (satellite uploads some of its data)
i“ AsyncFLEO [14] 79.49 69.88 61.43 9 (sink satellite has sufficient visible period)
|| ours | 94.64 | 89.69 82.65 2.13 (PS located anywhere) |

Ground Truth: PermanentC Ground Truth: Forest Ground Truth: Forest
Predicated: PermanentCro Predicated: forest Predicoted: Forest

Fig. 6: Twenty randomly selected images from a Eurostat
test set of 5400 samples, illustrating the predicted vs. ground
truth labels. Blue and red color represent correct and incorrect
predictions, respectively.
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Evaluation

Results 1: Convergence

Individual class accuracy for EuroSat

TABLE IV: Evaluation of our approach on EuroSat Dataset.

Metric | # of [ Near-polar constellation (857) ] [ Inclined constellation (45°) ]
Class images || ACC(%)| PC (%) | RC (%) | F1 (%) ACC(%)I PC (%) | RC (%) | FI(%)
AnnualCrop 600 97.63 92.06 | 94.67 93.34 98.39 91.71 94.0 92.84
Forest 600 98.19 96.73 | 98.67 97.69 99.52 96.59 | 99.17 97.86
HerbaccousVegetation| 600 99.32 93.05 | 93.67 93.36 98.5 92.12 [ 945 93.33
Highway 500 99.61 97.74 | 95.0 96.35 99.31 97.93 94.60 96.24
Industrial 500 98.89 98.95 | 93.80 96.30 99.30 98.94 | 93.40 96.09
Pasture 400 99.23 96.42 94.25 95.32 99.33 96.67 94.25 95.44
PermanentCrop 500 97.46 95.14 90.0 92.50 98.54 94.50 89.40 91.88
Residential 600 99.01 91.45 99.83 95.46 99.04 92.15 99.83 95.84
River 500 99.56 98.17 96.60 97.38 99.44 97.37 96.60 96.99
Seal.ake 600 99.11 98.66 | 98.0 98.33 99.63 99.15 97.50 98.32
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(b) Inclined constellation (45°).

Fig. 5: Confusion matrix that compares 10 predicted and
ground-truth classes for 5400 test images.



Evaluation
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Results 2: Computation and Communication overhead; Energy Consumption

A. Computation Overhead
TABLE V: Comparison of computation and communication
overheads of our approach in different settings.

» Measured by floating-point operations

per second (FLOPS)
(a) Computation overhead. (b) Communication overhead.
B.C i cati 0 head Model | FLOPS (G) Dataset | Size (MB)
. Communication Overnea
CNN using MNIST 11.91 MNIST 0.437
CNN using CIFAR-100 28.13 CIFAR-100 7.76
VGG-16 using EuroSat 43.84 EuroSat | 26.68

C. Energy Consumption
> Jetson Nano experienced GPU usage of 17--58% during training on various datasets

> Energy consumption ranged between merely 1.38--2.25 watts for each local model, demonstrating the
advantage of being highly lightweight @



From Lab to Space

= Recent Launch (March 6,2024)

» SpaceX launched an LEO satellite developed by Missouri
University of Science and Technology, tasked with
capturing Earth images.

» Equipped with Raspberry Pi
= Future Launch (Feb. 2026)

» Currently working on building two other LEO satellites:
Missouri Rolla (MR) and Missouri Rolla Second (MRS).

» MR and MRS will be equipped with Jetson Nano to train
ML models onboard
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Take-Home Message

Al-driven satellite edge computing (SEC) is coming.

*

Questions?

Federated learning integrated with LEO satellite
networks (FL-LEO) is a promising approach but
with challenges of computational and storage
limitations

®
We propose a solution to tackle this challenge in
FL-LEO to enable SEC
» Personalized ML model via divide-and-conquer Funded by: Acknowledgement:

B

» Orbital model retraining ' ¥

Validated by testbed




Security & Privacy
Preserving

All papers are available at
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Tony Luo
All papers are available at
https://tluocs.github.io


