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• AD is a leading cause of dementia with rising global burden
• Progresses from Mild Cognitive Impairment (MCI) to severe functional loss
• Early detection is key to intervention

• Trouble remembering events 
• Difficulty recalling names 
• Frequently loses personal 

items

• Worsening memory loss
• Confusion about names 

and relationships
• Difficulty with daily tasks 

• Difficulty recognizing family 
members

• Wheelchair dependence
• Trouble eating and loss of 

bowl/bladder control
• Limited vocabulary & 

comprehension

Neuroimaging + machine learning 
have shown promise

Introduction
Alzheimer’s Disease
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Introduction
Role of Explainable Artificial Intelligence (XAI)

• Black-box nature of AI models causes skepticism in clinics
• Trust and adoption require transparent decision-making
• XAI provides insights into why/how a prediction is made

Pre-model / ante-hoc: 

• Data or feature 
engineering before 
training the model (e.g., 
identifying key brain 
biomarkers).

In-model / Intrinsic: 

• Incorporate model 
design or training 
mechanism into 
model itself

Post-model / post-hoc: 

• Explaining 
predictions after 
the model runs 
(e.g., Grad-CAM).

XAI categories:

June 10, 2025
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• Lack of ground truth to validate the explanation
• Lack of metrics for pathology alignment
• Post-hoc heatmaps (e.g., Grad-CAM) have limited reliability in 

brain scans (works better for natural images)

Post-hoc approaches

• While inherently interpretable (e.g., linear models or 
decision trees), they

• Struggle to capture complex patterns present in 
high-dimensional medical data

Intrinsic approaches

Introduction
Challenges in Medical XAI 
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• Introducing Jacobian Maps (JMs) as an ante-hoc explainability tool for AD 
detection.

How it works (overview):
• Compute Jacobian determinants, which measure how much each voxel 

(3D pixel in a brain scan) expands or shrinks compared to a healthy brain.
▪ This creates a subject-specific map of brain structural changes.
▪ This map serves as a kind of ground truth that highlights the locations of brain changes.

• and we apply it before training medical AI models.

Our Method
Ante-hoc XAI with Jacobian Maps 

June 10, 2025
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• Oasis dataset
• 3D images

• Participants include 755 cognitively normal (CN) adults and 622 patients 
at various stages of cognitive decline with age between 42-95 yrs.

• Based on clinical dementia rating (CDR) scores:

Method (details)
Transforming Brain Images into Jacobian Maps (JM)

CDR Class

0 Normal

0.5 MCI

1 Mild

2 Moderate

3 Severe Combined

June 10, 2025
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(b) Bias Field Correction
• Corrects non-uniform intensity caused by magnetic field inhomogeneities in the 

scanner.
• Ensures that tissue intensity is consistent across the brain.
• Tool: FLIRT (FMRIB’s Linear Image Registration Tool)

Method (details)
Transforming Brain Images into Jacobian Maps (JM)

June 10, 2025
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(c) Brain Extraction
• Removes non-brain tissues (skull, skin, etc.) to isolate the brain.
• Reduces irrelevant variability and computation.
• Tool: BET (Brain Extraction Tool)

Method (details)
Transforming Brain Images into Jacobian Maps (JM)

June 10, 2025
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(d) Registration to Template (MNI152)
• Align each brain to a common anatomical space to allow voxel-wise comparison.
• Uses non-linear image registration via Symmetric Normalization (SyN).
• Tool: ANTs (Advanced Normalization Tools)

Method (details)
Transforming Brain Images into Jacobian Maps (JM)

June 10, 2025
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(e) Compute Deformation Vector Field
• After registration to MNI152, calculate how much each voxel has moved from the original brain.
• This deformation is expressed as a vector field:

where 𝜙 is the transformation function.

Method (details)
Transforming Brain Images into Jacobian Maps (JM)
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(f) Compute Jacobian Determinant
• A Jacobian matrix Is composed of the gradients of each deformation field v(.), and it 

captures the stretching, compression, and shearing of the voxel.
• We compute the determinant of this matrix.
• Doing this for all the voxels result in the Jacobian map.

Method (details)
Transforming Brain Images into Jacobian Maps (JM)

June 10, 2025
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Brain Volume Changes Denoting 
Dementia

Deformation Field

Jacobian Matrix (J):

Method (details)
Computing Jacobian Maps

Jacobian Map
o Captures subtle brain volume changes
o Highlights local brain morphometry
o Provides informative representations for feature learning

Determinant of each voxel:
>1 → local expansion
=1 → no brain change
<1 → local compression

Jacobian Determinant:

Semantics:

June 10, 2025
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• No segmentation needed → avoids label noise and complexity
• Whole-brain coverage → no patch-based sampling
• Clinically intuitive → visualizes structural atrophy directly
• Quantitative → preserves local volume change metrics
• Generalizable → works across MRI, PET, or CT if deformation fields are computed

Method
Key Advantages of JM for Ante-hoc XAI

MRI CTPET

June 10, 2025
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• Input: 3D Jacobian Maps (or standard registered MRI images for comparison).
• Five 3D conv layers, each with a kernel of size 3×3×3.
• After each conv layer:

o Batch Normalization: Stabilizes learning and accelerates convergence.
o ReLU Activation: Introduces non-linearity.
o Max-Pooling (at selected layers): Downsamples the spatial resolution.

• Output is flattened and passed through two Fully Connected (FC) layers.
o The first FC layer uses Dropout for regularization.
o The second FC layer outputs logits, normalized with Softmax to get class probabilities.

Experiments
Model Architecture

June 10, 2025
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• Hyperparameters:
• Optimizer: Adam
• Cross-Entropy loss
• Learning Rate: 1e-4
• Batch Size: 15

• 5-Fold Cross-Validation is used to ensure robust evaluation:
• Data is split into 5 subsets: 4 for training and 1 for validation in each fold.
• 50 epochs per fold
• Early stopping if validation loss does not improve (to prevent overfitting)

Experiments
Training Details

June 10, 2025
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• JM-base approach outperforms those using standard registered MRIs in all metrics. 
• JM contributes more discriminative information by capturing local volumetric brain changes.

Experiments
Diagnostic Performance

June 10, 2025
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JM improves training stability:
• no JM: More fluctuation and less consistent validation accuracy.
• with JM: Smoother, stabler convergence with better validation performance.

Experiments
Fold-wise examination

No JM:

With JM:

June 10, 2025
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Grad-CAM is extended to 3D CNN to visualize 
the most influential regions.

No JM: broader, less localized/focused activations.

Experiments
Interpretations (Qualitative)

With JM: sharper focus on specific structural changes.

June 10, 2025
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We apply the following steps to quantitatively 
measure the model interpretability:
1) Register Grad-CAM heatmaps to MNI152 

template.
2) Use the Harvard-Oxford cortical atlas to 

divide brain into anatomical regions.
3) Compute average voxel intensity within each 

region.
4) Rank regions by importance (activation level).

Experiments
Interpretations (Quantitative)

June 10, 2025
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• Frontal-temporal region is a key area involved in memory, decision-making and language. 
• Changes / degenerates early, even starting from CN and MCI. 

Experiments
Interpretations (Quantitative)

Avg. voxel 
intensity of 
each region

June 10, 2025
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• Rank of temporal lobe increases in MCI and MLD.
• Temporal lobe includes hippocampus (海马体) and entorhinal cortex (内嗅皮层), and is 

among the first regions to show atrophy, with memory loss being a key symptom.

Experiments
Interpretations (Quantitative)

Avg. voxel 
intensity of 
each region

June 10, 2025
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• In late AD, neurodegeneration becomes widespread.
• Frontal lobe handles planning, judgment, social behavior.
• Parietal (顶骨) lobe controls spatial orientation, attention.
• These areas are affected less during early stages but more in late stages.

Experiments
Interpretations (Quantitative)

Avg. voxel 
intensity of 
each region

June 10, 2025
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• Limbic system is crucial for emotion and memory.
• Appears to be involved more in early and late stages while less in intermediate stages

Experiments
Interpretations (Quantitative)

Avg. voxel 
intensity of 
each region

June 10, 2025
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• Frontal-Temporal regions are dominant across all classes → Key biomarkers in 
AD.

• As AD progresses, Temporal Lobe becomes more important in MCI and MLD 
stages.

• Parietal and Frontal Lobes gain importance in SEV → reflects widespread 
neurodegeneration.

• Sub-lobar and Limbic regions show varying importance, capturing non-linear 
disease progression.

• Consistency with clinical evidence is observed in our experiments.

Experiments
Interpretations (Quantitative) - Summary

June 10, 2025
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• Why Multi-modal Imaging?
▪ Different imaging modalities capture complementary information:

o MRI: Excellent soft tissue contrast—shows structural brain changes like atrophy.
o CT: Captures bone and dense tissue differences; helps with structural localization 

and calcification, and can fill in missing contrast in certain brain areas.

• We extend our study by combining MRI + CT:
▪ Concatenate MRI and CT images along the channel dimension.
▪ The fused volume is treated as a single input to the 3D CNN.
▪ The model learns from joint features from the very beginning of processing.

Experiments
Extension to Multi-modal Setting

June 10, 2025



26Mustafa, Elmahallawy, and Luo: Jacobian Maps for XAI (2025) 

Results

• Across all stages (CN, MCI, MLD, SEV), the use of 
Jacobian Maps still significantly improves all the 
metrics.

• Compared to the unimodal (MRI) case, performance 
improves overall, especially in early stages (which is 
important)

Experiments
Extension to Multi-modal Setting

June 10, 2025
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Interpretability Results

Jacobian Maps enhance 
interpretability  further by 
elevating the intensity level 
of AD-relevant regions; i.e., 
making the volumetric 
deformations more 
pronounced.

Experiments
Extension to Multi-modal Setting

June 10, 2025
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Conclusion

June 10, 2025

 Clinical Challenge
• Alzheimer’s Disease (AD) is progressive (over multiple stages) and complex.
• Early, accurate diagnosis is critical — yet explainability is key to adoption as well.

 Our Contributions
• Introduced Jacobian Maps (JMs) as an ante-hoc XAI approach

o Capturing subtle, localized brain deformations to enable more interpretable model
• Integrated JMs into a 3D CNN and provided visual + quantitative interpretability using JM + Grad-CAM.
• Extended to a multimodal (MRI + CT) setting.

 Key Outcomes
• Improved diagnostic performance across all AD stages.
• Enhanced interpretation consistent with clinical evidence (e.g., frontal-temporal lobes)
• Bridges the gap between deep learning and clinical interpretability. 
• Anticipated to be extensible to other neurodegenerative diseases (e.g. Parkinson, epilepsy/seizures, 

autism, ADHD) and modalities (e.g., PET).
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