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Background

Adversarial examples (AEs):
• Inputs to a deep learning model that have been intentionally modified in small, often 

imperceptible ways to cause the model to make wrong predictions.

“Making a pig fly” isn’t that hard:

“pig”
91% confidence

noise
non-random

“airliner”
99% confidence
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Background

Transfer-based black-box attacks
• The most realistic attacks – requires little knowledge about target models
• The key is to generate “transferable” (generalizable) AEs

Surrogate Target

Generate Attack
“gibbon”

(white-box) (black-box)

AE

“panda”
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The gap

• Many such transferrable attacks 
have been proposed and shown 
to be successful (among  CNNs)

• However, transferring across 
heterogeneous architectures 
(e.g., CNNs, ViTs, MLPs) has 
been rather ineffective

Our empirical finding:
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Hypothesis

• Inspired by the observation of 
receptive fields of CNNs as 
compared to ViTs, we hypothesize 
that:

• The poor adversarial 
transferability is due to CNNs’ 
inadequacy in attending to 
long-range dependencies and 
large contexts.

Raghu, Maithra, et al. "Do vision transformers see like convolutional neural networks?" NeurIPS (2021).
Inductive bias
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Method

• Introduce long-range dependencies into CNNs
▪ by proposing a Feature Permutation Attack (FPA)

• Permute feature maps inside the surrogate model 
during the process of generating AEs:
▪ FPA-R: random
▪ FPA-N: neighborhood

Rearrange pixels within a feature map randomly Exchange each pixel with one of its four neighboring 
pixels (randomly chosen)
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• Difference?
▪ FPA-R: directly introduces global (long-range) dependency
▪ FPA-N: much more indirect, preserves local spatial 

relationship more

• Since there are many feature maps in a CNN, which 
particular feature maps to permute? By how much?
▪ l : Location (layer/block)
▪ 𝛾 : ratio of channels
▪ p : permutation probability per iteration
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Experiments

• Target models under attack: 7 CNNs, 4 ViTs, 3 MLPs
▪ CNNs: VGG-19 [22], ResNet-152 [10], Inception v3 [23], DenseNet121 

[11], MobileNet v2 [21], WRN [37], PNASNet [15].
▪ ViTs: ViT-B [7], DeiT-B [27], Swin-B [17], BEiT-B [1].
▪ MLPs: Mixer-B [25], Res-MLP [26], gMLP [16].

• Surrogate model: ResNet-50
• 5,000 correctly classified test images from the ImageNet validation set (to 

generate AEs)

• FPA-R: l = 5, γ = 0.3, p= 0.2 (equiv: 6% of channels permuted)
• FPA-N: l = 2, γ = 0.6, p= 0.5 (equiv: 30% of channels permuted)
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Results 

• ASR: attack success rate
• FPA-N achieves the highest ASR in all 14 cases

▪ +14.57 points on Swin-B (compared to the best non-FPA method)
▪ +14.48 points on Res-MLP (compared to the best non-FPA method)

• FPA-R: the overall runner-up
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FPA is very flexible

• Can be seamlessly integrated with probably any attack
▪ Any attack could serve as the base and gain significant attack strength

• Performance increases ~20, 14, and 19 points (see last column) by FPA-N
▪ Even FPA-R achieves quite notable gains too
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Ablation study
▪ l : Location (layer)
▪ 𝛾 : ration of channels
▪ p : permutation probability

• FPA-N (triangular marker) is not sensitive to hyperparameter variation
• Dash-lines (horizontal) are vanilla attacks without FPA
• FPA-N consistently outperforms FPA-R, as FPA-N better preserves local contextual information.
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Efficiency 

• Our proposed permutation operation is executed solely through memory 
operations without requiring matrix computations, additional parameters, or 
FLOPs.
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Conclusion

• We hypothesize that the failure of heterogeneous adversarial transfer is due 
to CNN’s inadequacy of modeling long-range dependencies

• We propose Feature Permutation Attack to address this limitation

• Flexible plug-in: probably any attack can serve as the base
• FPA improves attack success rates significantly (by 8-26 percentage points) 

even in the heterogeneous setting (from CNN to ViT and MLP)

• FPA is simple and efficient: it introduces zero FLOP and zero model 
parameters.
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