
Distributed Anomaly Detection using
Autoencoder Neural Networks in WSN for IoT

Tie Luo∗ and Sai G. Nagarajan†
∗Institute for Infocomm Research, A*STAR, Singapore

†Engineering Systems and Design Pillar, Singapore University of Technology and Design
E-mail: luot@i2r.a-star.edu.sg, sai nagarajan@mymail.sutd.edu.sg

Abstract—Wireless sensor networks (WSN) are fundamental
to the Internet of Things (IoT) by bridging the gap between the
physical and the cyber worlds. Anomaly detection is a critical
task in this context as it is responsible for identifying various
events of interests such as equipment faults and undiscovered
phenomena. However, this task is challenging because of the
elusive nature of anomalies and the volatility of the ambient
environments. In a resource-scarce setting like WSN, this
challenge is further elevated and weakens the suitability of
many existing solutions. In this paper, for the first time, we
introduce autoencoder neural networks into WSN to solve the
anomaly detection problem. We design a two-part algorithm
that resides on sensors and the IoT cloud respectively, such that
(i) anomalies can be detected at sensors in a fully distributed
manner without the need for communicating with any other
sensors or the cloud, and (ii) the relatively more computation-
intensive learning task can be handled by the cloud with a
much lower (and configurable) frequency. In addition to the
minimal communication overhead, the computational load on
sensors is also very low (of polynomial complexity) and readily
affordable by most COTS sensors. Using a real WSN indoor
testbed and sensor data collected over 4 consecutive months, we
demonstrate via experiments that our proposed autoencoder-
based anomaly detection mechanism achieves high detection
accuracy and low false alarm rate. It is also able to adapt
to unforeseeable and new changes in a non-stationary envi-
ronment, thanks to the unsupervised learning feature of our
chosen autoencoder neural networks.

I. INTRODUCTION

Wireless sensor networks (WSN) are the eyes and ears of
the Internet of Things (IoT) in the sense that they transform
physical phenomena into digital signals and transfer these
signals to the interconnected cyber-world for much richer
processing and analytics. In reality, however, such signals
or data are rarely perfect, where anomalies often arise and
can interfere with the subsequent IoT analytics. Anomalies,
also known as outliers, are data that do not conform to
the patterns exhibited by the majority of the data set [1].
It is important to identify anomalies because they often
indicate events of interest such as equipment faults, sudden
environmental changes, security attacks, and so on. In fact,
anomaly detection is even essential to many IoT systems
when, oftentimes, the whole purpose of deploying a sensor
network as part of an IoT ecosystem is not to know the
“norm” but to capture the highly erratic event occurrences.

Although the task of anomaly detection could be under-
taken by a central IoT entity such as “back-end” as often
referred to, such a scheme tends to cause highly inefficient
resource utilization (besides undesirable delay). This is
because of the large amount of raw data that needs to be
transmitted from sensors to the central entity, which entails
substantial channel interference and energy consumption,
while in fact only a very small fraction of the transmitted
data are anomalous.

Therefore, it is more desirable to push such tasks to the
“edge” as much as possible, to maximize the efficiency
of resource utilization as well as responsiveness. However,
anomaly detection is challenging for resource-limited sen-
sors, owing to the elusive nature of anomalies and the
volatility of ambient physical environment. Existing solu-
tions based on various approaches have been proposed in the
literature, such as threshold-based detection and Bayesian
assumptions of prior distributions [2], classification using
k-nearest neighbors [3], local messaging based distributed
detection [4], [5], support vector machines (SVM) based
detection [6], and so forth. However, they are either compu-
tationally expensive or incur large communication overhead,
which weekends their applicability to resource-constrained
wireless sensor networks.

In this paper, we propose to use autoencoder neural
networks [7] for anomaly detection in WSN. Autoencoders
are a deep learning model, and are traditionally used in
image recognition [7] and other data mining problems
such as spacecraft telemetry data analysis [8]. However,
deep learning is generally not an option for WSN because
of its formidable hunger for computational resources. We
overcome this infeasibility by building an autoencoder neu-
ral network that consists of only three layers including
the one hidden layer of neurons. This simple structure,
however, performs very well due to the inherent power of
reconstructing the input data by autoencoders. Specifically,
we design a two-part algorithm that resides on sensors and
the IoT cloud, respectively, such that (i) anomalies can be
detected at sensors in a fully distributed manner, without the
need for communicating with any other sensors or the cloud,
and (ii) the relatively more computation-intensive learning
task (for model training) can be handled by the cloud. The
communication between sensors and the cloud happens at
a much lower (and configurable) frequency than sensing. In
addition, the computational load is also very low on sensors
(in polynomial rather than exponential complexity such as in
[3]), which is friendly to resource-limited sensor hardware.

For evaluation purposes, we use a sensor dataset collected
over four consecutive months from a WSN testbed deployed
in our office building. We demonstrate that our proposed
distributed anomaly detection using autoencoders achieves
high detection accuracy and low rate of false alarms (jointly
characterized by a comprehensive metric called AUC). We
also demonstrate that it can adapt to unforeseeable and new
changes (which are however common in reality), which
substantiates its suitability for non-stationary and evolving
environments [9].

To the best of our knowledge, this work is the first to
introduce autoencoders into WSN, or more broadly IoT, for

Tony
Typewritten Text
IEEE International Conference on Communications (ICC) 2018

2

anomaly detection. Besides the minimal communication and
computation requirements and the distributed advantage, we
also reap the benefit from the unsupervised learning feature
that autoencoders possess (while most neural networks do
not). This is particularly useful because it dissolves the
common challenge that supervised machine learning models
often lack of sufficient training data of anomalies.

II. RELATED WORK

There are various anomaly detection methods with dif-
ferent levels of complexity. The basic idea is to model the
distribution of what is considered to be “normal” and then
check if the target data deviate from the distribution to a sig-
nificant degree. For example, several statistical techniques
as noted by [2] assume a prior distribution for the “normal”
data and perform a hypothesis test based on that assumption.
However, model mismatch will occur when data in the
real world do not adhere to the assumption. Some other
techniques take a threshold-based approach as also surveyed
by [2], but it is difficult to identify a good threshold, and
even if found, it inevitably pertains to particular setting and
is hard to generalize.

In view of such problems, non-parametric methods were
proposed as more sophisticated solutions. For example, [3]
uses the k-nearest neighbors algorithm to create a hyper-
grid around a given data point, and consider the data point
anomalous if less than k other data points lie inside that
hyper-grid. This algorithm has a computational complexity
of O

(
2M−1

)
, where M is the dimension of input data

which can be hundreds or even thousands, making it pro-
hibitive for high-dimensional cases.

In the quest of searching for more efficient solutions,
[4] and [5] propose distributed algorithms that rely on
message exchange among sensors to detect anomalies in
real time. Although these methods are computationally less
intensive, they require frequent and reliable communications
among sensors, which imposes serious power consumption
on energy-constrained sensors.

To reduce communication overhead, [6] propose two
distributed online anomaly detection techniques based on a
hyper-ellipsoidal one-class support vector machine (SVM).
The main idea is to take advantage of the spatiotemporal
correlation between sensor data and to update the SVM
model (more specifically the ellipsoidal boundary) to reflect
the change in the normal sensor data. However, these tech-
niques involve matrix inversions which are computationally
unfriendly to sensors. For a more comprehensive survey, the
reader is referred to [9].

We propose to use autoencoder neural networks for un-
dertaking the anomaly detection task in WSN. We leverage
the reconstruction ability of autoencoders and design a two-
part algorithm that eliminates the need for communication
between sensors. The algorithm running on sensors only
involves a simple matrix dot product operation whose com-
putational complexity is much lower than existing solutions.

Autoencoders were traditionally used in image recogni-
tion problems [7] and spacecrafts’ telemetry data analysis
[8], which all have (statically) well-defined training and test
data sets. In a distributed and networked context like WSN,
which is much more complex and dynamic, this paper—
to the best of our knowledge—is the first work that uses
autoencoders for anomaly detection in a networked context.

III. MODEL AND METHOD

A. Preliminaries and Model

Figure 1: An autoencoder neural network.

An artificial neural network is an interconnected group of
processing nodes, i.e., “neurons”, that jointly perform a (typ-
ically nonlinear) transformation of inputs to certain desired
outputs. An autoencoder is a special type of neural networks
whose objective is to reconstruct the inputs instead of
predicting some target variables. By reconstructing inputs,
an autoencoder tries to learn a condensed representation
of the input data, a process also known as “encoding”.
Formally, see Fig. 1 in which an autoencoder consists of:

1) An input layer: an M -dimension vector that represents
the input signals, denoted by x = (x1, x2, ..., xM). For
example, it could be the pixel values of an image, or
a time series of temperature sensor readings.

2) An output layer: denoted by vector x̂ =
(x̂1, x̂2, ..., x̂M). Note that this is distinct from
general neural networks where we would use
y = (y1, y2, ..., y|y|) to denote the output layer. In
the case of autoencoders, the output has the same
dimension as the input, and we would like the output to
be equal to the input for the purpose of reconstructing
the original input. Hence we automatically obtain our
training samples by setting y = x, which is why
autoencoders are unsupervised learning models.

3) One or multiple hidden layers: sitting between the input
and output layers, these hidden layers aim to learn a
pattern in the inputs so as to “encode” the essential
information (with affordable information loss). Let us
denote the total number of all the layers by L and index
the layers by l = 1, 2, ..., L, and denote the number of
nodes in the l-th layer by n(l) (which does not count the
bias unit “+1” which we explain shortly). For example
in Fig. 2, L = 3 and n(2) = 2.
In general, an autoencoder has multiple hidden lay-
ers, but in this particular work we use the simplest
form—one layer only—to minimize the computational
overhead for distributed detection. It was generally
observed to perform reasonably well in practice, as also
demonstrated by our own evaluation.

4) Activation function and hyper-parameters: each neuron
in layer l = 2, 3, .. represents an activation function

3

f(·) which is typically a sigmoid function:1

f(z) =
1

1− e−z
.

The (hyper-)parameters of an autoencoder are weights
W and biases b, where W (l)

ij is the weight associated
with the connection from node j in layer l to layer i in
layer l + 1,2 and b(l)i is the bias associated with node
i in layer l+ 1. For example, if we denote by a(l)i the
output value (a.k.a. activation) of the neuron i in layer
l = 2, 3, ..., then

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 + ...+W

(1)
14 x4 + b

(1)
1)

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 + ...+W

(1)
24 x4 + b

(1)
2)

In a more compact form, and more generally for all
l = 2, 3, ..., we write

a(l) = f(W(l−1)a(l−1) + b(l−1)). (1)

The intercept term b(l−1) in the above corresponds to
the “+1” node (in n(l) copies) at layer l − 1, which is
called a bias unit or bias node.
The final output, x̂, is then a(L) which we also denote
by h(W,b)(x).

Given T training samples {x[1],x[2], ...,x[T]} where
each x[i] = (x1[i], x2[i], ..., xM [i]), the objective of an
autoencoder is to minimize the cost function

J(W, b) :=
1

T

T∑
i=1

(
1

2
||hW,b(x[i])− x[i]||2

)

+
λ

2

L−1∑
l=1

n(l)∑
j=1

n(l+1)∑
i=1

(
W

(l)
ij

)2 (2)

The first term defines the reconstruction error with respect
to the original inputs, and the second term is a regularization
term to prevent overfitting. Minimizing this function can
be solved using standard gradient descent methods such
as stochastic gradient descent or L-BFGS (Limited-memory
BroydenFletcherGoldfarbShanno) algorithms [10], [11].

B. System Architecture and Two-Part Algorithm

Our system architecture is presented in Fig. 2. Each
sensor runs one copy of the autoencoder and performs two
tasks (apart from sensing): (i) provide the input and output
of the autoencoder to the IoT cloud as the training data,
which are uploaded via a gateway or cluster head in a much
lower frequency than sensing (e.g., once a day versus once
every two minutes), (ii) perform anomaly detection, which
is done locally without the need for communicating with any
other sensors, the gateway, or the IoT cloud. The gateway
simply relays data between sensors and the cloud, and can
be bypassed if each sensor is equipped with an Internet
connection capability such as 3G, WiFi or Ethernet.

The cloud trains the autoencoder machine learning model
using the training data (x, x̂) provided by all the sensors.
Afterward, it sends the updated model parameters (W,b)

1The other common choice for f is the hyperbolic tangent, or tanh,
function. Recently, a rectified linear activation function was discovered as
yet another choice which often works well for deep learning.

2The reversed order of subscript indexes might look counter-intuitive but
this notational convention was adopted by the neural networks literature
likely because of back-propagation.

Figure 2: Architecture of a WSN that uses autoencoders for
anomaly detection.

back to the sensors to update their respective autoencoders.3

In addition, if there are anomalies reported by the sensors,
the cloud may take actions such as alarming to a control
center or conducting IoT analytics such as root cause
analysis.

Specifically, each sensor performs anomaly detection as
follows. For the ease of description, we assume the fre-
quency of uploading training data to be once a day. Hence,
if the sensing frequency is once every two minutes, then
the dimension of the input vector is M = 720. Note that
it is well known that one aggregated transmission is much
more energy-efficient than multiple separate transmissions
even if the data size is larger; in fact, one can reduce the
communication overhead even further by using a (lossless)
local data compression algorithm such as S-LZW [12] or
LEC [13].

1) Each sensor, say s, calculates the reconstruction error,
or residual, for the m-th input-output observation (m =
1, 2, ...,M) on a given day d:

rm(s, d) = xm(s, d)− x̂m(s, d).

2) Sensor s uploads {rm(s, d)|m = 1, 2, ...,M} to the
cloud at the end of the day d.

3) The cloud calculates the statistics of the residual in
terms of mean and variance:

µm =
1

DS

D∑
d=1

S∑
s=1

rm(s, d)

σ2
m =

1

DS

D∑
d=1

S∑
s=1

(rm(s, d)− µm)
2

(3)

where D is the total number of days over which the
cloud computes the statistics, and S is the total number
of sensors.

4) The cloud sends µm and σm back to every sensor.
5) Each sensor detects anomaly by calculating

αm(s, d) =

{
0, if |rm(s, d)− µm| ≤ pσm
1, otherwise

(4)

where p is a parameter chosen according to the specific
use case. Typically, the residuals r are Gaussian and
we can choose p = 2 (or p = 3) which corresponds to

3This describes the case when the sensors are monitoring the same
physical phenomenon in proximity, where at a given point in time, sensor
readings are similar across sensors if no anomaly occurs. For a large-scale
WSN, the sensors can be organized into c clusters (hence the “cluster head”
in Fig. 2) such that each cluster is represented by an autoencoder and the
cloud will simply maintain c autoencoders.

4

that 5% (or 2.5%) observations on the average would
be classified as anomalies.
Note that step 5 does not need to wait for step 4 which
simply allows sensors to update their current values of
µm and σm.

This is essentially a two-part algorithm that resides in part
on sensors and in part on the cloud. Thus, the pseudo-code
of the above is presented in Algorithm 1 (DADA-S) and
Algorithm 2 (DADA-C). Prior to executing the algorithms,
we initialize the parameters W and b as well as µ and
σ by training our autoencoder model over a historical data
set with no or negligible anomalies (this training phase also
involves presetting the “seed” values of W and b which we
set as small random numbers as suggested by [11]).

Algorithm 1: DADA-S: Distributed Anomaly Detection
using Autoencoders (Sensor’s algorithm)

1 for d← 1 to ∞ do
2 Obtain sensor readings x = {x1, x2, ..., xM};
3 Feed x into autoencoder to obtain output

x̂ = (x̂1, x̂2, ..., x̂M);
4 Calculate residual vector r = x− x̂;
5 Detect anomaly according to (4) and obtain

α(s, d);
6 Send x, x̂, r(s, d),α(s, d) to cloud (via gateway);
7 Update W,b,µ,σ received from cloud;
8 end

Algorithm 2: DADA-C: Distributed Anomaly Detection
using Autoencoders (Cloud’s algorithm)

1 for d← 1 to ∞ do
2 Receive x, x̂, r(s, d),α(s, d) from all the sensors

s = 1, 2, ..., S;
3 Store x, x̂ in the training data set and react to

α(s, d) if needed;
4 if d mod Du = 0 then

// Du denotes training frequency

(in no. of days) chosen by cloud

5 Retrain autoencoder with the updated training
data set; // data will be

pre-shuffled to avoid learning

biases toward the latest data

6 Recalculate µ,σ using r(s, d),α(s, d)
according to (3);

7 Send updated W,b,µ,σ to all the sensors;
8 end
9 end

For maximal clarity, the algorithms have assumed a
day to be the computational period. For mission-critical
applications where anomalies need to be detected in real-
time, it can be achieved by simply modifying the DADA-S
algorithm such that lines 2–5 are executed when each single
reading xm is obtained.4 Note that this does not necessarily
increase communication overhead as the sensor only needs

4In a highly erratic environment and for more accurate result, one may
want to increase the uploading frequency so that the cloud can re-train he
model using a corresponding weight sub-matrix and bias sub-array, as the
order of the inputs is preserved.

to send αm(s, d) when it is equal to 1 (which only happens
sporadically).

The computational complexity at sensors is dominated
by Line 3 which computes the output of the autoencoder
given an input vector. In fact, this only involves a simple
matrix dot product operation (cf. (1)) with a maximum
dimension of M , which has a computation time of O(M2).
This is much lower than O(2M−1) as in [3], and is readily
affordable by most COTS sensors.

IV. PERFORMANCE EVALUATION

A. WSN Testbed and Dataset

We evaluate our proposed distributed anomaly detection
algorithm using an indoor WSN testbed deployed in our
office building at different locations (Fig. 3). This testbed
consists of S = 8 sensor nodes that monitor temperature and
relative humidity, with a sensing frequency of once every 2
minutes, or 720 daily readings from a single sensor. We have
collected all the sensor data from September to December
2016.

(a) Sensor at a corridor. (b) Sensor at cubicle 1

(c) Sensor at cubicle 2. (d) Sensor beside a window.

Figure 3: The indoor deployment of our wireless sensor network.

Since it is difficult to have sufficient real anomalies, we
generate synthetic anomalies into the data set using two
commonly used models [14]:
• Spike: a sharp rise followed immediately by a sharp

decline in the sensor reading. Formally,

x′(t) = x(t) + vδ(t), (5)

where δ(t) is the Dirac delta function and v is the
magnitude of the spike.

• Burst: a continuous and constant offset persisting for a
finite period of time. Formally,

x′(t) =

{
x(t) + v, tstart ≤ t ≤ tend
x(t), otherwise.

(6)

In both cases, v can be negative.

5

B. Experimental setup

We build our autoencoder neural network with the input
and output layers both having n(1) =M = 720 nodes, and
determine the number of hidden neurons, i.e., n(2), using k-
fold cross validation. The optimal value is n(2) = 504 which
corresponds to a compression ratio of 30% (1− 504/720).
We initialize the parameters (W,b,µ,σ) using a small
portion of the dataset obtained from our WSN testbed
without anomalies. In the evaluation of our algorithm, we
characterize the anomaly detection performance using Area
Under the Curve (AUC) corresponding to the Receiver
Operating Characteristic (ROC) curves [15]. An ROC curve
is most commonly used to visualize the performance of a
binary classifier, in terms of true positive rate (TPR, or
probability of detection) and false positive rate (FPR, or
false alarm rate), and AUC is arguably the best way to
summarize the classifier performance in a single number.
Intuitively, AUC is the probability that a classifier assigns
a higher score to a randomly chosen positive-class object
than to a randomly chosen negative-class object. A good
classifier has an AUC close to 1 and a bad one close to 0;
an AUC of 0.5 corresponds to a random guessing classifier.

C. Results

Pre-Validation: We first verify if the autoencoder model
has been trained properly, by looking at its reconstruction
performance when there is no anomaly present. The results
are shown in Fig. 4 for two different sensors on two
different days (other sensors on other days demonstrated the
similar performance). We can see that the reconstructed (or
recovered) data x̂ almost coincides with the original input
x (true data), which validates our model to proceed to the
next step, anomaly detection.

0 100 200 300 400 500 600 700 800
Time

27.5

28.0

28.5

29.0

29.5

30.0

Te
m
pe

ra
tu
re

Recovered Data
True Data

0 100 200 300 400 500 600 700 800
Time

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

29.5

Te
m
pe

ra
tu
re

Recovered Data
True Data

Figure 4: Reconstruction performance of the autoencoder we built.
The recovered data (x̂) almost coincides with the true data (x),
indicating a valid autoencoder.

Varying anomaly magnitude: In this set of experiments,
we vary the magnitude v of spikes and bursts such that v
of each anomaly follows a normal distribution N (µv, σ

2
v),

while fixing the frequency of anomalies at K = 100 per
day. To see how AUC is affected by two parameters µv and
σ2
v , we plot AUC as a heat map against both µv and σ2

v

as shown in Fig. 5. We see that AUC > 0.8 most of the
time, which indicates a good classifier. The exception when
AUC is lower (between 0.5 and 0.8) happens when both
|µv| and σ2

v are very small (|µv| < 0.07 and σ2
v < 0.12).

This is because in those cases, the anomalies are not really
notable, or perhaps even not anomalies. Since in practice,
only significant deviations are typically concerned with, our
algorithm is suitable for all such use cases. Moreover, Fig. 5
also shows that AUC is symmetric about the mean µv , which
is well understood since positive and negative deviations are

treated the same by our neural network model (captured by
residual r).

0.01 0.12 0.23 0.34 0.45 0.56 0.67 0.78 0.89 1.0
noise variance

-0.1

-0.08

-0.06

-0.03

-0.01

0.01

0.03

0.06

0.08

0.1

no
ise

 m
ea

n

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Figure 5: AUC heat map: AUC versus µv (Y-axis) and σ2
v (X-axis).

Varying anomaly frequency: In this set of experiments,
we vary the frequency K, the number of anomalies per day,
and present the results in Fig. 6 with the corresponding |µv|
and σ2

v values. In general, when more and more anoma-
lies occur, detecting anomalies becomes harder because
the dominance of “normal” data which set the “baseline”
of a classifier, is jeopardized. However, as we can see
from Fig. 6, the AUC of our autoencoder continues to
increase (slightly). This is because AUC is not a singular
metric like misclassification error but a compound metric
that summarizes both TPR and FPR. Therefore, we would
rather be not too optimistic but draw a more conservative
conclusion from this set of results, that the performance can
be maintained within a reasonable range of K. This reflects
certain robustness of our autoencoder.

One may wonder why the algorithm performs well even
when K = 720, which corresponds to that every sensor
reading is an anomaly. This is because there are 8 sensors
in our testbed and these K anomalies are injected into the
whole data set per day. In other words, even at K = 720,
there are still 7 normal sensors on the average which help
to screen out the anomalous sensor readings.

0 100 200 300 400 500 600 700 800
No of outliers (K)

0.88

0.89

0.90

0.91

0.92

AU
C

(a) µv = 0.1, σ2
v = 0.01.

0 100 200 300 400 500 600 700 800
No of outliers (K)

0.505

0.510

0.515

0.520

0.525

0.530

0.535

AU
C

(b) µv = 0.01, σ2
v = 0.01.

Figure 6: AUC versus the anomaly frequency K.

Adaptivity to non-stationary environment: In reality,
environment is constantly evolving; observations that were
previously considered anomalies could later become “nor-
mal”, and vice versa. Thus, it is desirable to have an
adaptive detector which can learn the changes and continues
to work well despite unforeseeable and dynamic changes in
the underlying physical phenomenon.

6

To this end, we configure our autoencoder with two
different setups to run DADA-C:

• Random: Same as the above, new observations (x, x̂)
are randomized together with the entire historical data
set which is then fed into the autoencoder to learn
hyper-parameters (W,b).

• Prioritized: The most recent Du days’ data are mixed
with anther randomly chosen Du days of historical data
to form the training data set which is then fed into the
autoencoder. We set Du = 14 for this evaluation.

For a clearer comparison, we evaluate true positive rate
(TPR) and false positive rate (FPR) separately and show
results in Fig. 7. In the evaluation, µv = 0.5 and σ2

v = 0.02,
and those v > µv are considered true anomalies while
v ≤ µv are considered acceptable environmental changes.
We see that TPR slightly drops when K increases. This is
because the training data set is getting more and more “per-
turbed” and becomes “less normal”, which makes anomalies
less obvious to identify. The Random scheme performs
better (by up to 18%) because the majority of the training
data is still historical data which is less affected by the
new changes. On the other hand, in Fig. 7b we see that
the Prioritized scheme has much lower false positive rate
(FPR) than Random, by up to 60%. This is because the
Prioritized scheme enables the autoencoder to learn from
more fresh inputs so as to update weights and biases in a
more responsive manner, while as the same time reserving
sufficient historical data so as to keep a balance. More
specifically, the variance σ2

m of the residual as calculated
by (3) increases after each re-training, and hence allows for
more room for the changes to be accepted without raising
false alarms.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

No. of outliers (K)

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

Random
Prioritized

(a) True positive rate (TPR).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

No. of outliers (K)

F
al

se
 P

os
iti

ve
 R

at
e

(F
P

R
)

Random
Prioritized

(b) False positive rate (FPR).

Figure 7: Adapting to non-stationary environment.

While the most suitable choice will depend on whether
the specific application is more concerned with TPR or
FPR, we could recommend Prioritized in general because it
strikes a more balanced tradeoff. However, the key takeaway
from this set of evaluation, is that our autoencoder model is
able to adapt to unforeseeable and new changes in a non-
stationary environment.

V. CONCLUSION

This paper presents the first effort of introducing au-
toencoder neural networks into WSN to perform anomaly
detection. Despite the unsuitability of deep learning in gen-
eral for resource-constrained WSN, we make this approach
feasible by building a simple structure of autoencoder and
exploiting its powerful reconstruct-ability. The approach is
made possible also by our design of a two-part algorithm

specifically for spatially distributed WSN such that commu-
nication overhead is minimized and computational load is
allocated to the most suitable entities.

Specifically, our autoencoder contains a single hidden
layer of neurons and the corresponding computational
complexity is only polynomial (O(M2)) in order to suit
resource-limited sensors. Training the model involves an
IoT cloud while the communication between the cloud
and sensors happens at a much lower (and configurable)
frequency. More importantly, anomaly detection at sensors
is fully distributed and requires zero communication among
sensors.

Using sensor data collected from an indoor WSN testbed
over a 4-month period, we demonstrate via experiments that
our proposed algorithm can detect anomalies with high ac-
curacy and low false alarms which are jointly characterized
by AUC. Furthermore, the unsupervised learning nature, as
well as the flexibility in our training configuration, allows
our algorithm to be able to adapt to unforeseeable and new
changes in a non-stationary environment, as demonstrated
in our experiments too.

In future work, we plan to extend our model to large-
scale sensor networks to match the need of large-scale IoT
applications seamlessly.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58,
2009.

[2] S. Rajasegarar, C. Leckie, and M. Palaniswami, “Anomaly detec-
tion in wireless sensor networks,” IEEE Wireless Communications,
vol. 15, no. 4, 2008.

[3] M. Xie, J. Hu, S. Han, and H.-H. Chen, “Scalable hypergrid k-NN-
based online anomaly detection in wireless sensor networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 8, pp.
1661–1670, 2013.

[4] P.-Y. Chen, S. Yang, and J. A. McCann, “Distributed real-time
anomaly detection in networked industrial sensing systems,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3832–3842,
2015.

[5] J. W. Branch, C. Giannella, B. Szymanski, R. Wolff, and H. Kar-
gupta, “In-network outlier detection in wireless sensor networks,”
Knowledge and information systems, vol. 34, no. 1, pp. 23–54, 2013.

[6] Y. Zhang, N. Meratnia, and P. J. Havinga, “Distributed online outlier
detection in wireless sensor networks using ellipsoidal support vector
machine,” Ad hoc networks, vol. 11, no. 3, pp. 1062–1074, 2013.

[7] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[8] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders
with nonlinear dimensionality reduction,” in Proceedings of the
MLSDA Workshop. ACM, 2014, pp. 4:4–4:11.

[9] C. O’Reilly, A. Gluhak, M. A. Imran, and S. Rajasegarar, “Anomaly
detection in wireless sensor networks in a non-stationary environ-
ment,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3,
pp. 1413–1432, 2014.

[10] S. S. Haykin, Neural networks and learning machines. Pearson
Upper Saddle River, NJ, USA, 2009, vol. 3.

[11] Andrew Ng et al., “Unsupervised feature learning
and deep learning tutorial,” 2012. [Online]. Available:
http://deeplearning.stanford.edu/wiki/index.php/UFLDL Tutorial

[12] C. M. Sadler and M. Martonosi, “Data compression algorithms
for energy-constrained devices in delay tolerant networks,” in ACM
SenSys, 2006, pp. 265–278.

[13] F. Marcelloni and M. Vecchio, “An efficient lossless compression
algorithm for tiny nodes of monitoring wireless sensor networks,”
The Computer Journal, vol. 52, no. 8, pp. 969–987, 2009.

[14] S. Reece, S. Roberts, C. Claxton, and D. Nicholson, “Multi-sensor
fault recovery in the presence of known and unknown fault types,”
in 12th IEEE International Conference on Information Fusion, 2009,
pp. 1695–1703.

[15] T. Fawcett, “ROC graphs: Notes and practical considerations for
researchers,” Pattern Recognition Letters, vol. 27, no. 8, pp. 882–
891, 2004.

