
Distributed Anomaly Detection

using Autoencoder Neural

Networks in WSN for IoT

Tony T. Luo, Institute for Infocomm Research, A*STAR, Singapore - https://tonylt.github.io

Sai G. Nagarajan, Singapore University of Technology and Design

IEEE ICC 2018

Introduction

• Anomalies (a.k.a. outliers):

• Data that do not conform to the patterns exhibited by the majority of data set

• e.g. equipment faults, sudden environmental changes, security attacks

• Conventional approach to anomaly detection:

• Mainly handled by “Backend”

• Disadvantages: inefficient use of resources (bandwidth & energy); delay

• Other prior work:

• Threshold-based detection with Bayesian assumptions [2]

• Classification using kNN or SVM [3,6]

• Distributed detection based on local messaging [4,5]

• Disadvantages: computationally expensive, large communication overhead

Our approach

• Objective: push the task to the “edge”

• Challenges: sensors are resource-scarce

• Introducing autoencoder neutral networks

• A deep learning model traditionally used in image recognition and spacecraft telemetry data

analysis

• But DL is generally not suitable for WSN!

• We build a three-layer autoencoder neutral network with only one hidden layer, leveraging

the power of autoencoder in reconstructing inputs

• We design a two-part algorithm, residing on sensors and IoT cloud, respectively:

• Sensors perform distributed anomaly detection, without communicating with each other

• IoT cloud handles the computation-intensive learning

• Only very infrequent communication between sensors and cloud is required

Contributions

1. First introduces autoencoder neutral networks into WSN to solve the

problem of anomaly detection

2. Fully distributed

3. Minimal communication and edge computation load

4. Solves the common challenge of lacking anomaly training data

Preliminaries: autoencoder

• A special type of neural networks

• Objective is to reconstruct inputs instead

of predicting a target variable

• Structure:

• Input layer: e.g., a time series of sensor

readings

• Output layer: a “clone” of the inputs

• Hidden layers: “encode” the essential

information of inputs

Preliminaries: autoencoder (cont’d)

• Activation function: each represented by a

neuron, usually a sigmoid function

• Hyperparameters:

• W: weights

• b: bias (the “+1” node)

• Output at each neuron:

• Objective: minimize cost function

i.e., Reconstruction error + Regularization term (to avoid overfitting)

System architecture

• Sensors

• Each runs an autoencoder to

detect anomalies

• Sends inputs and outputs (in fact

difference) of autoencoder to IoT

cloud in low frequency

• Cloud

• Trains autoencoder model using

the data provided by all sensors

• Sends updated model parameters

(W, b) back to all the sensors

Anomaly detection

• Each sensor calculates reconstruction error (residual):

• Cloud calculates mean and variance over all sensors:

• Each sensor detects anomaly by calculating

• p: assuming residuals are Gaussian, p=2 corresponds to 5% are anomalies and 3 corresponds to 2.5%

D: # of days

S: # of sensors

Two-part algorithm

• Sensor: DADA-S

Computational complexity: O(M2)

TPDS’13: O(2M-1)

• Cloud: DADA-C

Performance evaluation

• An indoor WSN testbed consisting of 8 sensors

that measure temperature and humidity

• Data collected over 4 months (Sep – Dec 2016)

• Synthetic anomalies generated using two

common models:

• Spike:

• Burst:

• # of neurons: 720 (I/O layer), 504 (hidden layer;

optimized using k-fold cross validation)

Reconstruction performance

• When no anomaly is present

• Recovered data (output) almost coincides with true data (input) – model is

validated

Varying anomaly magnitude

• Varying magnitude according to

normal distribution N(μ, σ2)

• Plot AUC w.r.t. both μ and σ2

• AUC > 0.8 in most cases, indicating

a good classifier

• Lower AUC (0.5--0.8) appears when

both μ and σ2 are very small, which

are insignificant deviations from the

normal

Varying anomaly frequency

• Continues to perform well even when the # of anomalies is large

Adaptive to non-stationary environment

• Use two different configurations of training data:

• Random: new observations are randomized with the entire historic data

• Prioritized: most recent 14 days’ data mixed with another randomly chosen 14 days’ data

• TPR: Random performs better,

because training data is less

affected by changes

• FPR: Prioritized performs

better, because autoencoder

learns more from fresh inputs

that contains more changes,

thus recognizing some previous

anomalies are no longer

anomalies

Conclusion

• First introduces autoencoder neutral networks into WSN to solve the anomaly

detection problem

• Fully distributed

• Minimal communication (zero among sensors) and minimal edge computation

load (polynomial complexity)

• Solves the common challenge of lacking anomaly training data (by virtue of

unsupervised learning)

• High accuracy and low false alarm (characterized by AUC)

• Adaptive to new changes in non-stationary environments

• Connect via my research homepage:

• https://tonylt.github.io

