Distributed Anomaly Detection
using Autoencoder Neural
Networks in WSN for loT

Tony T. Luo, Institute for Infocomm Research, A*STAR, Singapore - https://tonylt.github.io
Sai G. Nagarajan, Singapore University of Technology and Design

|IEEE ICC 2018
Institute for

Infocomm Research




Introduction

- Anomalies (a.k.a. outliers): |
- Data that do not conform to the patterns exhibited by the majority of data set TIME
- e.g. equipment faults, sudden environmental changes, security attacks
- Conventional approach to anomaly detection:
- Mainly handled by “Backend”
- Disadvantages: inefficient use of resources (bandwidth & energy); delay

- Other prior work:
- Threshold-based detection with Bayesian assumptions [2]
- Classification using kNN or SVM [3,6]
- Distributed detection based on local messaging [4,5]
- Disadvantages: computationally expensive, large communication overhead




Our approach

- Objective: push the task to the “edge”
- Challenges: sensors are resource-scarce

- Introducing autoencoder neutral networks

- A deep learning model traditionally used in image recognition and spacecraft telemetry data
analysis

- But DL is generally not suitable for WSN!

- We build a three-layer autoencoder neutral network with only one hidden layer, leveraging
the power of autoencoder in reconstructing inputs
- We design a two-part algorithm, residing on sensors and IoT cloud, respectively:
- Sensors perform distributed anomaly detection, without communicating with each other
- 10T cloud handles the computation-intensive learning
- Only very infrequent communication between sensors and cloud is required



Contributions

1. First introduces autoencoder neutral networks into WSN to solve the
problem of anomaly detection

2. Fully distributed
3. Minimal communication and edge computation load

4. Solves the common challenge of lacking anomaly training data



Preliminaries: autoencoder
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Preliminaries: autoencoder (cont'd)

- Activation function: each represented by a
neuron, usually a sigmoid function |

fle) = =
- Hyperparameters: Xy
- W: weights
- b: bias (the “+1” node) X3
- Qutput at each neuron:
al) = f(WEDal=1) 4 p-1)) e
- Objective: minimize cost function
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l.e., Reconstruction error + Regularization term (to avoid overfitting)




System architecture

- Sensors s
ensoars
- Each runs an autoencoder to {each runs an
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detect anomalies

- Sends inputs and outputs (in fact
difference) of autoencoder to loT
cloud in low frequency
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Anomaly detection

- Each sensor calculates reconstruction error (residual):
rm(8,d) =z (s,d) — Tin(s, d)

- Cloud calculates mean and variance over all sensors:

1
Hm = D_S ZZT’m(S,d)
d=1 s=1 D: # of days
1 D S S: # of sensors
2
012?1 = D—S ZZ (Tm(sa d) - .u'm)
d=1 s=1

- Each sensor detects anomaly by calculating

T )1, otherwise

- p: assuming residuals are Gaussian, p=2 corresponds to 5% are anomalies and 3 corresponds to 2.5%



Two-part algorithm

- Sensor: DADA-S

- Cloud: DADA-C

Algorithm 1: DADA-S: Distributed Anomaly Detection
using Autoencoders (Sensor’s algorithm)

Algorithm 2: DADA-C: Distributed Anomaly Detection
using Autoencoders (Cloud’s algorithm)

1 for d < 1 to oo do

2 Obtain sensor readings x = {xy,x9, ..., ZTar};

3 Feed x into autoencoder to obtain output
X = (il,iz, ...,i‘M);

4 Calculate residual vector r = x — X;
Detect anomaly according to (4) and obtain
afs,d);

6 Send x,X,r(s,d), a(s,d) to cloud (via gateway);
Update W, b, i, o received from cloud;

8 end

Computational complexity: O(M?)
TPDS’13: O(2M-1)

1 for d < 1 to oo do

2

Receive x, X, r(s,d), a(s,d) from all the sensors

s=1,2..5;

Store x, X in the training data set and react to

s, d) if needed;

if d mod D,, = 0 then

// D, denotes training frequency
(in no. of days) chosen by cloud

Retrain autoencoder with the updated training
data set; // data will be
pre-shuffled to avoid learning
biases toward the latest data

Recalculate p, o using r(s,d), a(s, d)

according to (3);

Send updated W, b, i, o to all the sensors;

end

end




Performance evaluation

- An indoor WSN testbed consisting of 8 sensors
that measure temperature and humidity

- Data collected over 4 months (Sep — Dec 2016)

- Synthetic anomalies generated using two
common models:
- Spike: z'(t) = z(t) + vi(t)

- Burst:
I’(t) _ ﬂf(t) + v, tstcm‘t g t g tend
x(t), otherwise.

- # of neurons: 720 (I/O layer), 504 (hidden layer;
optimized using k-fold cross validation)

(c) Sensor at cubicle 2. (d) Sensor beside a window.



Reconstruction performance

- When no anomaly is present
Recovered data (output) almost coincides with true data (input) — model is

validated
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Varying anomaly magnitude

- Varying magnitude according to 0.1 095
normal distribution N(u, ¢?) 0.08 0.90
- Plot AUC w.r.t. both y and ¢? 0.06 085
- AUC > 0.8 in most cases, indicating 1o a0
a good classifier c |
- Lower AUC (0.5--0.8) appears when 5 1"
both y and o2 are very small, which 2 {070
are insignificant deviations from the 003 065
normal 0.06
0.60
0.08
0.55

0.1

0.01 0.12 0.23 0.34 0.45 0.56 0.67 0.78 0.89 1.0
noise variance



Varying anomaly frequency

- Continues to perform well even when the # of anomalies is large
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Adaptive to non-stationary environment

- Use two different configurations of training data:
- Random: new observations are randomized with the entire historic data
- Prioritized: most recent 14 days’ data mixed with another randomly chosen 14 days’ data

- TPR: Random performs better, ~ '[" *‘\\ —_ O =
because training data is less Al , | [ Prioitized
affected by changes

- FPR: Prioritized performs
better, because autoencoder
learns more from fresh inputs
that contains more changes,
thus recognizing some previous
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Conclusion

- First introduces autoencoder neutral networks into WSN to solve the anomaly
detection problem

- Fully distributed

- Minimal communication (zero among sensors) and minimal edge computation
load (polynomial complexity)

- Solves the common challenge of lacking anomaly training data (by virtue of
unsupervised learning)

- High accuracy and low false alarm (characterized by AUC)
- Adaptive to new changes in non-stationary environments
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