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Introduction  

• Anomalies (a.k.a. outliers): 

• Data that do not conform to the patterns exhibited by the majority of data set 

• e.g. equipment faults, sudden environmental changes, security attacks 

• Conventional approach to anomaly detection: 

• Mainly handled by “Backend” 

• Disadvantages: inefficient use of resources (bandwidth & energy); delay 

• Other prior work: 

• Threshold-based detection with Bayesian assumptions [2] 

• Classification using kNN or SVM [3,6] 

• Distributed detection based on local messaging [4,5] 

• Disadvantages: computationally expensive, large communication overhead 



Our approach 

• Objective: push the task to the “edge” 

• Challenges: sensors are resource-scarce 

• Introducing autoencoder neutral networks 

• A deep learning model traditionally used in image recognition and spacecraft telemetry data 

analysis 

• But DL is generally not suitable for WSN! 

• We build a three-layer autoencoder neutral network with only one hidden layer, leveraging 

the power of autoencoder in reconstructing inputs 

• We design a two-part algorithm, residing on sensors and IoT cloud, respectively: 

• Sensors perform distributed anomaly detection, without communicating with each other 

• IoT cloud handles the computation-intensive learning 

• Only very infrequent communication between sensors and cloud is required 



Contributions 

1. First introduces autoencoder neutral networks into WSN to solve the 

problem of anomaly detection 

 

2. Fully distributed 

 

3. Minimal communication and edge computation load 

 

4. Solves the common challenge of lacking anomaly training data 

 



Preliminaries: autoencoder 

• A special type of neural networks 

• Objective is to reconstruct inputs instead 

of predicting a target variable 

 

• Structure: 

• Input layer: e.g., a time series of sensor 

readings 

• Output layer: a “clone” of the inputs 

• Hidden layers: “encode” the essential 

information of inputs 



Preliminaries: autoencoder (cont’d) 

• Activation function: each represented by a 

neuron, usually a sigmoid function 

 

• Hyperparameters: 

• W: weights 

• b: bias (the “+1” node) 

• Output at each neuron: 

 

• Objective: minimize cost function 

i.e., Reconstruction error +  Regularization term (to avoid overfitting) 



System architecture 

• Sensors 

• Each runs an autoencoder to 

detect anomalies 

• Sends inputs and outputs (in fact 

difference) of autoencoder to IoT 

cloud in low frequency 

• Cloud 

• Trains autoencoder model using 

the data provided by all sensors 

• Sends updated model parameters 

(W, b) back to all the sensors 

 



Anomaly detection 

• Each sensor calculates reconstruction error (residual): 

 

• Cloud calculates mean and variance over all sensors: 

 

 

 

 

• Each sensor detects anomaly by calculating 

 

 
 

• p: assuming residuals are Gaussian, p=2 corresponds to 5% are anomalies and 3 corresponds to 2.5% 

D: # of days 

S: # of sensors 



Two-part algorithm 

• Sensor: DADA-S 

Computational complexity: O(M2) 

TPDS’13: O(2M-1) 

• Cloud: DADA-C  



Performance evaluation 

• An indoor WSN testbed consisting of 8 sensors 

that measure temperature and humidity 

• Data collected over 4 months (Sep – Dec 2016) 

• Synthetic anomalies generated using two 

common models: 

• Spike:  

• Burst: 

 

 

• # of neurons: 720 (I/O layer), 504 (hidden layer; 

optimized using k-fold cross validation) 



Reconstruction performance 

• When no anomaly is present 

• Recovered data (output) almost coincides with true data (input) – model is 

validated 



Varying anomaly magnitude 

• Varying magnitude according to 

normal distribution N(μ, σ2) 

• Plot AUC w.r.t. both μ and σ2 

• AUC > 0.8 in most cases, indicating 

a good classifier 

• Lower AUC (0.5--0.8) appears when 

both μ and σ2 are very small, which 

are insignificant deviations from the 

normal 



Varying anomaly frequency 

• Continues to perform well even when the # of anomalies is large 



Adaptive to non-stationary environment 

• Use two different configurations of training data: 

• Random: new observations are randomized with the entire historic data 

• Prioritized: most recent 14 days’ data mixed with another randomly chosen 14 days’ data 

• TPR: Random performs better, 

because training data is less 

affected by changes 

• FPR: Prioritized performs 

better, because autoencoder 

learns more from fresh inputs 

that contains more changes, 

thus recognizing some previous 

anomalies are no longer 

anomalies 



Conclusion 

• First introduces autoencoder neutral networks into WSN to solve the anomaly 

detection problem  

• Fully distributed 

• Minimal communication (zero among sensors) and minimal edge computation 

load (polynomial complexity) 

• Solves the common challenge of lacking anomaly training data (by virtue of 

unsupervised learning) 

• High accuracy and low false alarm (characterized by AUC) 

• Adaptive to new changes in non-stationary environments 
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• https://tonylt.github.io 


