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Abstract—As mobile crowdsourcing techniques are steering
many smart-city and Internet-of-Things applications, a new
challenge of signal source localization problem arises, which is
to infer the locations of signal sources based on crowdsourced
data. It will benefit real-world applications such as WiFi advisory
systems by locating WiFi access points and urban noise monitor-
ing systems by locating noise sources. However, crowdsourced
data collected from diverse mobile devices are often sparse,
fluctuating, and inconsistent. In this paper, we propose a source
localization scheme to solve this problem, without the need of
prior localization infrastructure or reference (anchor) nodes.
We also implement a crowdsourcing WiFi advisory system and
conduct real-world experiments to evaluate the performance of
the proposed scheme. The results show that our scheme can locate
the WiFi access points within a small error of 1 ⇠ 16 meters,
and improve the accuracy of a conventional method by up to
50%.

Index Terms—Crowdsourcing, cyber-physical systems, mobile
computing, participatory sensing, pervasive computing.

I. INTRODUCTION

Mobile crowdsourcing techniques have spurred a wealth
of smart-city applications such as air quality monitoring [1],
transportation services [2][3], noise monitoring [4], and WiFi
advisory systems [5]. Such systems need to deal with crowd-
sourced data generated from diverse mobile devices, interpret
them properly, and produce useful information services such
as noise heat maps or WiFi network quality maps.

Such smart-city applications face a challenge called signal
source localization, which is to infer the locations of signal
sources such as WiFi access points or noise sources in urban
areas. For instance, in a crowdsourcing WiFi advisory system,
citizens and tourists may share their experience of using public
WiFi networks at various locations through their smartphones,
and be guided to connect to a WiFi network of good quality.
In such applications, location information of signal sources is
essential for decision making and service provisioning, but the
signal sources themselves are either not capable of providing
this information, or the information provided is very coarse-
grained (e.g., only indicating a region code) or erroneous
due to misconfiguration. In view of this, one potential and
cheap solution is to leverage crowdsourcing through WiFi user
devices such as smartphones to help locate the signal sources.
Performing such tasks is useful to improve the accuracy
of contributed data and hence the Quality of Contributed
Service [6] which is provisioned using user-contributed data.
However, doing so is challenged by the following factors:

1) Lack of infrastructure: User locations contributed via
users’ smartphones are often erroneous and inaccurate,
and there is usually no prior localization infrastructure
or reference nodes [7] in the real environment to conduct
calibration for public users’ smartphones.

2) Fluctuating and sparse data: Crowdsourced WiFi loca-
tions may vary dramatically over time, even in the case
that the data are collected by the same smartphone. In
addition, crowdsourced data can be sparse due to the
intermittent data-collection pattern.

3) Inconsistent data: WiFi locations collected by different
smartphones are inconsistent even if they are connected
to the same WiFi access point and are put side-by-side.
This makes data aggregation difficult.

To meet these challenges, we propose a probabilistic source
localization scheme to infer the location of signal sources
using the crowdsourced data. The proposed scheme does not
require prior localization infrastructure or reference points, but
rather incrementally utilize the crowdsourced data to refine the
localization results for increasingly higher accuracy. We also
implement a mobile crowdsourcing WiFi advisory system to
collect WiFi-quality data citywide, and conduct experiments
to evaluate the performance of our proposed scheme. The
experimental results show that our scheme can locate WiFi
access points within a small error of 1 ⇠ 16 meters, and
improve the accuracy of a conventional method by up to 50%.

The rest of this paper is organized as follows. We discuss
the existing work in Section II, and explain our system design
in Section III. Section IV presents our system implementation
and experimental results. Section V concludes this paper.

II. RELATED WORK

Crowdsourcing WiFi localization systems have attracted
substantial attention to reducing the cost of radio map con-
struction [8][9][7][10]. The radio map construction in [8]
relies on data contribution from a group of people who are
willing to contribute WiFi fingerprints, while [9] proposes an
algorithm to know whether further user input will improve
the fingerprint database in terms of system coverage and
accuracy. To reduce human intervention for measuring site-
specific WiFi fingerprints, [7] incorporates inertial sensors to
collect WiFi measurements along users’ moving paths and
infer users’ locations by matching with a known floor map. In
addition to moving path, [10] considers the distances between
walking steps to match the floor plan for reducing costs on
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Fig. 1. System architecture of our signal source locator.

manpower and time for radio map construction. Work [11][12]
considers modeling indoor space based on WiFi fingerprints of
a few given locations instead of such a heavy collecting and
training process. To improve the localization accuracy, [13]
incorporates received signal strength (RSS) to extract WiFi
fingerprints from crowdsourced data for relieving the influence
of RSS variation on localization, while [14] incorporates not
only WiFi fingerprints but also Bluetooth beacons together to
address the issue of space uncertainty. In addition to indoor
localization services, [15] designs an indoor WiFi monitoring
system to provide WiFi coverage map in indoor places, where
crowdsourced data is considered instead of manual site survey.
[16] extends [15] to incorporate human activity detection for
improving the localization accuracy. Instead of RF signals,
[17] considers the physical objects in the environment (e.g.
paintings and shops’ logos) as reference points to conduct
localization, where the user takes photos and sends to a
server to identify those physical reference points. Since the
above require a prior knowledge of floor map, [18] considers
patterns of walking trajectories captured by inertial sensors and
WiFi networks, that consists of walking steps, distance, and
direction, and WiFi fingerprints along these steps, to construct
a floor map for the indoor localization purpose.

Compared to the existing work, our work addresses a
different challenge from indoor localization, which is source
localization using crowdsourced data for smart-city applica-
tions. Second, our approach is calibration-free in the sense that
no prior infrastructure and reference nodes are needed. Third,
we design and implement a real smart-city application to verify
and demonstrate how we bridge the theoretical techniques and
practical applications in the real world.

III. SYSTEM DESIGN

The system architecture of our signal source locator is illus-
trated in Fig. 1. It consists of three components: crowd-sensors,

backend analytics, and application subscribers. Crowd-sensors
incorporate human and smartphone with various built-in sen-
sors into the sensing loop in the sense that both human and
sensor inputs can be treated as data contributions. The back-
end analytics runs our algorithm to infer the the locations
of signal sources such as wireless access points in a WiFi
advisory system or noise sources in a noise monitoring system.
The application subscribers (e.g., citizens, tourists, government
agencies) can access the crowdsourced data in the form
of refined and more accurate location information to find
out the signal sources. For example, a tourist may want to
know the exact location of a WiFi access point, and national
environment agency may want to locate intense noise sources
in urban areas.

A. Model
In our system, we assume that each source is a static

signal transmitter (e.g., a WiFi access point) in a given field
F . Each smartphone is assumed as a static observer when
it is measuring the signals from a particular source. For a
given source w, let M = {m1,m2, . . . ,mk

} denote the
measurements observed by a smartphone b. Each measurement
is denoted by m
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, in the
sense that the actual location of the observer b is assumed as
the measured location shifted a small error distance. A critical
issue is the signal source localization problem which refers to
inferring the location of the observed sources in the monitored
field F . Specifically, given a signal source w and a set of
measurements M , the signal source localization problem is
to infer the location with the maximal probability where w
is located at. Section III-B, we address the source localization
problem under a simple model incorporating observations from
a single smartphone. Section III-C then extends it to a more
complex model with multiple smartphones’ observations.

B. Probability-based Source Localization scheme
To solve the source localization problem, we propose a

probability-based approach that figures out the location with
the highest probability where the signal source is located at.
The key idea of our algorithm is to infer the location of the
observer first and then infer the location of the source based
on the probability distribution of the observer’s location. The
proposed scheme consists of four steps: (1) clustering, (2)
sampling, (3) observer localization, and (4) source localization.
The first two steps are to preprocess crowdsourcing data to
figure out the input set M , while the latter two steps are to
infer the location of the signal source.

1The android-based smartphones are able to capture the location of itself
based on availability of cell towers and WiFi access points. Results are
retrieved by a means of a network lookup.
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(a) Measurements on a Sunday. (b) Measurements on a Friday. 

Fig. 2. Measurements for a single source on two different days.

1) Clustering: As a smartphone may observe several dif-
ferent signal sources in F , this step is to group all the
measurements into different clusters such that measurements
in the smae cluster pertain to the same signal source. Each
source is associated with a unique signature, which is an
application-dependent identification. For instance, the BSSID
of a WiFi access point can be the source signature in a WiFi
advisory application, and fundamental frequency could be the
source signature in a noise monitoring application. In this
work, we consider a WiFi advisory application as the proof
of concept for our proposed scheme. Thus, two measurements
corresponding to the same WiFi access point (i.e, the same
BSSID) will be grouped into the same cluster.

2) Sampling: This step is to select a representative subset
of measurements from the collected measurements so as to
reduce the computation overhead in estimating the location
over the whole population of measurements. Here, we select
the representative subset based on the quality of data since
the collected measurements vary over time. To see this, we
conduct an experiment to measure a single wireless access
point for five minutes on two different days, where a single
smartphone stays static to collect measurements every second.
As it can be seen in Fig. 2, the locations measured on the two
days have different patterns. Among all the measurements,
we select those with the most accurate location informa-
tion. Specifically, for a given cluster C, we will identify
a subset M ✓ C to be the input of our scheme (i.e.,
M = {m1,m2, . . . ,mk

}) as follows. First, the measurements
are sorted by the localization accuracy. Then, we consider
a fixed window T to frame the sorted measurements for
sampling, where the number of measurements within a frame
is r⇥ T , where r denote the arrival rate of the crowdsourced
data. Then, we randomly select k measurements from the first
k frames to form the M = {m1,m2, . . . ,mk

}.
3) Observer Localization: This step is to find the observer’s

location using the sampling results, for which we take the
maximum likelihood estimation (MLE) approach. Considering
the observer’s (true) location by ✓

b

, for a given the set of
measurements M = {m1,m2, . . . ,mk

}, where the observed
location values are ˜l1 = l1, ˜l2 = l2, ..., ˜lk = l
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, the joint
density is
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Setting it to zero leads to the maximum likelihood estimate of
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In a coarse-grained system, we can simply assume that
the observer’s location is exactly the source’s location. Then
the source localization problem is degenerated to finding the
observer’s location. However, in a fine-grained application
(e.g., a WiFi advisory system), this assumption is not well
validated. Therefore, we explain the detailed source localiza-
tion algorithm when the observer is considered not co-located
with the source.

4) Source Localization: Below, we consider the probability
distribution of the observer’s location and the signal propaga-
tion model together to model the probability distribution of
the source’s location. We extend our prior work [19] by incor-
porating crowdsourced data to address the source localization
issue. Given a set of measurements M = {m1,m2, . . . ,mk

},
for each m

i

, we model the observer b’s location as a random
variable l

b

with the probability distribution function

p
i

(l
b

) =

1p
2⇡a

i

exp(� (l
b

� l
i

)

2

2a2
i

). (3)

On the other hand, assume that the signal propagation model
is a log-distance path loss model [20], where the path loss for
a given distance d between a pair of transmitter and receiver
is

PL(d) = S
tx

� S
rx

= PL(d0) + 10n log(

d

d0
), (4)
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Fig. 3. The results of data analysis for a WiFi access point.

Fig. 4. Visualization of crowdsourced data.

where S
tx

and S
rx

are transmitted power and received power,
respectively, n is the path loss exponent for a given envi-
ronment (e.g., n = 2 for free space), and d0 is a reference
distance close to the transmitter. When the shadowing effect
is considered, the path loss is modeled as a random variable

P̂L(d) = PL(d0) + 10n log(

d

d0
) +N(0,�)

= N(PL(d),�),

which is a normal distribution with a mean of PL(d) and a
standard deviation of �. Here, N(0,�) is a normal distribution
with a zero-mean and a standard deviation of � that stands
for the signal shadowing effect. Note that we use P̂L(d) to
distinguish from PL(d) where the latter stands for the case
without shadowing effects. Thus, for a given actual distance d
between a pair of source and observer, the path loss µ can be
modeled as a random variable with the probability distribution
function

q(µ) =
1p
2⇡�

exp(� (µ� PL(d))2

2�2
). (5)

Thus, we can model the distance d between the source and
the observer as a random variable and let g

i

(d) denote the
probability distribution function of d. Since µ is a random
variable and µ = PL(d) (i.e., µ is a function of the random
variable d), we have

q(µ) = g
i

(d)
@PL�1

(µ)

@µ
, (6)

where PL�1
(µ) = (10

µ�PL(d0)
10n

)d0 based on Eq. (4). Since
the probability distribution function of µ is known in Eq. (5),
we have

g
i

(d) =
q(µ)

@PL

�1(µ)
@µ

. (7)

However, g
i

(d) states the distance relationship between the
source and the observer in an one-dimensional domain. We
can extend it to a 2-dimensional domain to model the the
probability distribution of the source’s location. For a given
measurement m

i

obtained by the observer at the (known)
location of l

b

, based on the received signal strength, we can
model the source’s location l as a random variable with the
probability distribution function

h
i

(l|l
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where D(l, l
b

) is the distance between location l and location
l
b

. Furthermore, for a given measurement m
i

, we recall the
observer’s location is a random variable following Eq. (3).
Thus, we define the normalized probability that the source is
at location l is
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Finally, we consider all of measurements in M to infer the
source’s location. By giving equal weight to each measure-
ment, the normalized probability that the source’s location at
l is

⌦(l) =
1

k

kX

i=1

H
i

(l), (9)

where ⌦(l) aggregates the crowdsensing evidences. Therefore,
we can infer the location of the source w by

cL
w

= argmax

l2F

⌦(l), (10)

where cL
w

denotes the estimated location of the source based
on the set of measurements M selected from the whole
measurements contributed by the observer b. Here, we use
cL
w

to distinguish from the actual location L
w

.

C. Cross-Device Signal Source Localization
Since the measurements for a particular source are from

different observers (i.e., smartphones), we then explain how to
infer the source location based on cross-device measurements.
Let cL

w

(b1), cLw

(b2), . . . cLw

(b
N

) denote the estimated location
of a particular source w based on the measurements by N
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Fig. 5. The probability distribution function hi(l|lb) for a measurement with
lb = (1.2733656, 103.8122089).

(a)

Fig. 6. The probability distribution of the WiFi access point’s location.

observers b1, b2, . . . , bN , respectively. Based on the amount of
data contributed observers, we can estimate the location of the
source w by

NX

i=1

R
iP

N

i=j

R
j

· cL
w

(b
i

), (11)

where R
i

is the number of measurements contributed by
observer b

i

, and cL
w

(b
i

) is estimated location using Eq. (10).
The weights assigned to the estimated locations imply that an
observer who contributes more data will be trusted more by
the system.

IV. EXPERIMENTS ON A CROWDSOURCING WIFI
ADVISORY SYSTEM

We extend a crowdsourcing WiFi advisory system [5] to
evaluate the performance of our signal source localization

scheme. The WiFi advisory system aims to serve two types
of application subscribers: normal users (citizens and tourists)
and WiFi service providers. When a normal user visits a place,
the WiFi advisory system can help him/her to find available
WiFi access points within a queried area. For WiFi service
providers, the system provides an overview and details of
the coverage, connectivity, and user experience of using WiFi
hotspots, thereby facilitating urban planning and infrastructure
maintenance. In either case, locating WiFi signal sources (i.e.,
access points) is important for such smart-city applications.
Below, we explain the implementation details of the WiFi advi-
sory system and conduct experiments to study the performance
of the proposed signal source localization scheme.

A. Implementation

There are 4 main components in our WiFi advisory sys-
tem: (1) background data collection, (2) foreground interface,
(3) data analysis, and (4) data visualization. The first com-
ponent collects ambient WiFi-related information every 30
seconds through an Android background program. The infor-
mation includes the latitude and longitude location (measured
by network-based positioning technology), received signal
strength, and link speed, all associated with the WiFi access
point that the smartphone is connected to. The collected data
will be uploaded to the backend server when the Internet
is available. The second one is a mobile application that
provides users with an interactive interface to contribute their
user experience of using WiFi networks and guides them to
choose a good WiFi network. The third component runs our
signal source localization algorithm to determine the locations
of those collected WiFi access points. Fig. 3 shows the
localization results for a WiFi access point based on crowd-
sourced data. The fourth component provides different data
representations for application subscribers. Fig. 4 visualizes
the distribution of crowdsourced data.

B. Experimental Results

We conduct two experiments to study how our algorithm
localizes WiFi access points using real-world crowdsourced
data and the associated localization errors. In our experiments,
we obtain the actual location of WiFi access points from the
Google Map with human engagement. For parameters, we set
� = 14.6 dB, n = 25.8, d0 = 1 meter, and PL(d0) = 53.2
dBm as the default parameters in the log-distance path loss
model which are suggested by [21].

In the first experiment, we use MATLAB to study the
probability distribution functions of our algorithm when real-
world data is incorporated. We use a single smartphone (a
Redmi smartphone) to measure a single WiFi access point
for 1 hour. The fixed window T = 36 is considered in
the sampling step, and a total k = 100 measurements are
randomly selected. Fig. 5 shows the probability distribution
function h

i

(l|l
b

) in Eq. (8) for a measurement with l
b

=

(1.2733656, 103.8122089), a
i

= 43.5, and s
i

= �71. Fig. 6
shows the probability distribution function ⌦(l) in Eq. (9),
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Fig. 7. Evaluating localization accuracy for 5 WiFi access points.

where the location of the WiFi access point was inferred to
be cL

w

= (1.2733950710421, 103.8122556990361).
In the second experiment, we consider crowdsourcing mea-

surements for multiple (five) WiFi access points. We compare
the localization errors of our algorithm against the average
measurement errors, where the localization error is the distance
between the actual location of a WiFi access point and the
estimated location by Eq. (10), and the average measurement
error is the average of the distance between each measured
location and the actual location of the the WiFi access point,
i.e.,

P
k

i=1 |l � l
i

|/k. The experimental results are shown
in Fig. 7, and it indicates that our algorithm achieves an
localization error between 1 ⇠ 16 meters which amounts to
an accuracy improvement over the average measurement errors
by 36.41%, 45.65%, 2.20%, 31.63%, and 12.81% for the five
WiFi access points, respectively.

V. CONCLUSION

This paper addresses the challenge of signal source localiza-
tion in a newly emerged data collection paradigm, crowdsourc-
ing, for smart-city applications. We propose a probabilistic
algorithm to process the fluctuating, sparse, and inconsistent
crowdsourcing data without prior infrastructure. Furthermore,
we have implemented a crowdsourcing WiFi advisory system
and conducted experiments in the real world to evaluate
the performance of our algorithm. The experimental results
indicate our proposed scheme can determine the locations of
signal sources (i.e. WiFi access points) with an error of only
1 ⇠ 16 meters and improve the conventional measurement
method by up to 50% in terms of accuracy.
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