

Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion with Jacobian Maps

Yasmine Mustafa, Tony T. LuoPresented by: T. LuoDepartment of Computer Science, Missouri University of Science and Technology, USA

Alzheimer's Disease (AD)

• Risk for having Alzheimer's disease at age 45:

1 in **5** women and **1** in **10** men.

- The number of AD patients **doubles** every 5 years, estimated to reach **14 million** by 2060.
- Mortality rate: AD kills more people than breast cancer and prostate cancer combined
- o The symptoms of AD involve a decline in:

How to deal with it?

- Manual analysis of brain scans (CT, MRI, PET) is challenging
- o Even more so for early detection of AD patterns

• Resorting to machine learning appears to be promising

Opportunities and Challenges

- Multimodal Learning:
 - Machine learning with multimodal data has promised to yield superior performance compared to relying on a single modality.
 - Yet it needs an effective fusion method
- Missing Modalities:
 - Can lead to **biased** or less accurate model predictions
 - Simply ignoring subjects with missing modalities is not advisable (medical data is scarce resource!)
- Imbalanced Datasets:
 - Medical datasets are often small (due to the difficulty in data collection), restricting models' ability to generalize
 - To make it worse, the dominant samples are healthy subjects, while AD has various stages (MCI, mild, moderate, severe)
- Preprocessing:
 - Directly learning on the raw data, even after cleaning, is not effective due to the very subtle differences to recognize in (early) AD detection

• Multimodal Learning

 $\circ~$ Missing Modalities

 $\circ~$ Imbalanced Datasets

 \circ Preprocessing

Contributions

Early-Late Fusion Framework

ADASYN + Reweighting

(4)

-

Jacobian Maps

(1)

(3)

Data

- Participants included **755 cognitively normal adults** and **622 individuals at various stages** of cognitive decline, ranging in the age of 42-95 yrs.
- MRI and CT 3D images (depth=256)
- We re-labeled them based on clinical dementia rating (CDR) scores:

CDR	Class	
0	Normal	
0.5	MCI	
1	Mild	
2	Moderate	Combined (too few samples each)
3	Severe	

Preprocessing Pipeline

1) Jacobian Maps

- Capture subtle brain volume changes Ο
- Provide informative representations for feature learning Ο
- Highlight local brain morphometry Ο

$$J(v) = \begin{bmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} & \frac{\partial v_x}{\partial z} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} & \frac{\partial v_y}{\partial z} \\ \frac{\partial v_z}{\partial x} & \frac{\partial v_z}{\partial y} & \frac{\partial v_z}{\partial z} \end{bmatrix} \begin{bmatrix} v(x, y, z) = \phi(x, y, z) - (x, y, z). \\ \uparrow & \uparrow & \uparrow \\ \text{Displacement Transformation Original voxel} \end{bmatrix}$$

ъ.

$$J_{map}(M) = \begin{bmatrix} \vdots \\ \dots & Det(J(v(x, y, z)) & \dots \\ \vdots & \end{bmatrix}_{\substack{x = 1...W \\ y = 1...H}} x = 1...W$$

volume expansion if Det(J) > 1if Det(J) = 1At each voxel: no change volume compression if Det(J) < 1

Handling Missing Modalities: 2) Hot Deck Imputation

2. Use that subject's CT as substitute

3) Handling Imbalanced Data

ADASYN

- Estimates a desired distribution based on the **minority** class to be **oversampled**.
- Then generates different number of samples according to the distribution.

Reweighting

- o ADASYN does not make the class distribution even
- So we prioritize underrepresented classes to avoid bias towards majority classes

freq(c) = count
$$(y_{train} = c)$$
, for $c \in C$
Inverse Class Frequencies: $w(c) = \frac{1}{\text{freq}(c)}$, for $c \in C$

Normalized Class Weights: $w_{\text{normalized}}(c) = \frac{w(c)}{\sum_{c \in C} w(c)}$

4) Early-Late Fusion Framework

preprocessing

Performance across four AD stages

Model	Accuracy	Sensitivity	Specificity	
CNN	91.02	83.37	87.21	
RF CT	94.26	86.79	90.52	
RF MRI 89.35		83.14	94.47	
ELF	97.19	95.19	98.76	

Comparison with SOTA

Model	Modality	Classes	SENS	SPEC	ACC
Salami et al. 2022	MRI	AD, CN	86	85	87.7
Massalimova et al. 2021	MRI	NC, MCI, AD	96	96	96
Lazli et al. 2019	MRI, PET	AD, healthy	92	91.7	91
ELF	MRI, CT	Normal, MCI, mild AD, severe AD	95.19	98.76	97.19

Conclusion

- Proposed an Early-Late Fusion (ELF) framework to aggregate multimodal data for Alzheimer's disease diagnosis across four stages: normal, MCI, mild AD, severe AD.
- Jacobian domain transformation for better representation learning to capture (subtle) nuances
- Hot Deck Imputation to handle missing data modalities
- <u>ADASYN + reweighting</u> to handle imbalanced data
- Contributing towards more effective intervention and treatment of Alzheimer's disease.

"Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion with Jacobian Maps", Healthcom'23.

Thank You!

https://tluocs.github.io