
Analyses and Improvements of Link Management Protocol 
for GMPLS-based Networks 

Tie Luo 
Beijing University of Posts and Telecommunications 

Beijing, P.R. China 
e-mail: tluo@glorisoft.com 

 

G.S. Kuo 
National Chengchi University 

Taipei, Taiwan 116 
e-mail: gskuo@ieee.org 

 
Abstract – Generalized Multiprotocol Label Switching 

(GMPLS) is maturing to shape the next-generation mobile 
broadband IP networks, which will accommodate diverse 
technologies and various systems together. The Link 
Management Protocol (LMP), launched under the GMPLS 
context and being standardized by IETF, is designed for 
managing traffic-engineering (TE) links and verifying the 
reachability of control channels. A detailed study of the latest 
Internet-Draft on LMP has been conducted. Two important 
flaws in two of the four constituent procedures for LMP have 
been pointed out and improved by us in this paper. With 
regard to the link connectivity verification procedure, a 
batch-mode scheme is designed for enhancing its performance, 
scalability and flexibility, with theoretical analyses. In respect 
of the control channel management, a Privileged Hello 
Protocol is introduced to evade the dead-loop malfunction. 

I. INTRODUCTION 

Next-generation mobile broadband IP networks will 
consist of a large variety of technologies and network 
systems using Generalized MPLS (GMPLS) to dynamically 
provision resources and to provide network survivability. 
As a major feature, GMPLS separates signaling and routing 
function clearly from data forwarding function to provide a 
generic common control plane for diverse technologies that 
may be adopted. 

For fulfilling the design goal of managing GMPLS-based 
networks, Link Management Protocol (LMP) is currently 
under the standardization process led by Internet 
Engineering Task Force (IETF). LMP runs between 
neighboring nodes and is used to manage 
traffic-engineering (TE) links and verify reachability of the 
control channel. It consists of four procedures, control 
channel management, link property correlation, link 
connectivity verification, and fault management. 

Considerable endeavor has so far been made and the 
latest specification of LMP had recently been released by 
IETF [1]. Unfortunately, important flaws still exist behind 
the current protocol. The so-called Link Connectivity 
Verification procedure defined in [1] offers insufficient 
support for parallel processing, giving rise to problems 
concerning performance and scalability issues. With regard 
to the Control Channel Management procedure, a potential 
malfunction could occur on Hello messages initiated 
concurrently by both neighboring nodes, which can cause a 
dead loop as the consequence. 

Corresponding solutions to the problems mentioned 
above are proposed in this paper respectively. A 
batch-mode link connectivity verification, serving as a 
substitute for the original counterpart, is proposed by us to 
address the performance and scalability issues, additionally 
to enhance flexibility as well. To avoid the potential dead 
loop, we propose a Privileged Hello Protocol, which 
completely eliminates the undesirable possibility using a 
simple scheme. 

The rest paper is organized as follows. Section II 
analyzes the current LMP and identifies its imperfections. 
Our solutions are proposed with comparisons in Section III. 
Finally in Section IV, concluding remarks are made. 

II. ANALYSIS of LMP 

A. Link Connectivity Verification 

This procedure provides a mechanism that is used to 
verify the physical connectivity of the data links, and 
dynamically learns the TE link and Interface_Id 
associations as well. The procedure should be done initially 
when a TE link is established, and subsequently, on a 
periodic basis for all unallocated (free) data links of the TE 
link. 

For performance purposes, data links are likely to be 
verified in parallel. Although the current design of LMP 
does not exclude this kind of situation, such verification has 
not so far been well considered and the support remains 
insufficiently provided by the protocol. 

Generally, suppose a TE link between Node A and Node 
B consists of N unallocated data links among which Nf ones 
are broken. Node A initiates a parallel verification on the 
TE link by sending a BeginVerify message over a control 
channel. After Node B responding with a BeginVerifyAck 
message, Node A transmits N Test messages simultaneously, 
one per interface, over the N data links. 

For the reason that Node B has no way to learn the 
neighbor’s intention of performing verification in a parallel 
fashion, it has to deal with the matter in a common way. 
Upon receipt of each Test message, B maps the local 
Interface_ID to the received (remote) Interface_ID and 
marks this data link as UP; then it sends a 
TestStatusSuccess message over the control channel back to 
Node A indicating the health of this data link. On arrival of 
the message, Node A does the same mapping and marking 
job as B does and then replies with a TestStatusAck 
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message. 
Since Nf messages are lost due to the failed data links, a 

timer, name it Tb, which is used to detect such failures, 
expires after an observation period (specified by the 
VerifyDeadInterval). Concluding that one of the data links 
has failed, B notifies A of this information using a 
TestStatusFailure message, meanwhile resetting the timer 
Tb. Subsequently, another period of VerifyDeadInterval 
elapses and the timer Tb expires again, just reproducing the 
message handshake. Such a situation will repeat in this way 
for Nf times until at last the session is terminated by Node A 
transmitting an EndVerify message, which normally occurs 
after A has received a sum of N TestStatusSuccess and 
TestStatusFailure messages. The above entire scenario is 
illustrated in Fig. 1. 

Node A Node B
BeginVerify

TestStatusSuccess

TestStatusAck

TestStatusFailure

TestStatusAck

TestStatusAck

BeginVerifyAck

EndVerify

EndVerifyACK

startTimerA

[Notes to the actions]
startTimerA: Start
the VerifyInterval
timer (Ta).
startTimerB: Start
the
VerifyDeadInterval
timer (Tb).
endTimerA: End the
timer Ta.
estabMapping:
establish local/remote
Interface_Id mapping.
markUP: mark the
link as UP.
rstTimerB: Reset the
timer Tb.

startTimerB

endTimerA

TestStatusFailure

estabMapping;
markUP;
rstTimerB

N Test(s), Nf are lost
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 Fig. 1. A parallel verification scenario of the original LMP. 

Such verification has an undesirable consequence in that 
discovering all the failures need spend a period of 
Nf·VerifyDeadInterval, whereas in fact a single expiration 
of Tb is sufficient enough for Node B to judge that the 
expected incoming Nf Test messages have all been lost. To 
the extreme, if the whole TE link is broken, i.e., Nf=N, we 
will have to tolerate such a long delay of 
N · VerifyDeadInterval that the performance of the 
procedure will degrade to that of serial processing. 

A possible solution may suggest that this embarrassment 
can be overcome by Node A transmitting the EndVerify 
message immediately after acknowledging the first 
TestStatusFailure message originating from Node B. This 
EndVerify message, in addition to signifying the session 

can be terminated, carries an implication that all the rest 
data links without Test message coming out of have failed. 
Unfortunately, Node B cannot definitely recognize this 
additional meaning because, according to the protocol 
specification, the EndVerify message may be sent at any 
time when the initiating node, A, desires to end the Verify 
procedure. 

Besides performance degradation, this undesirability also 
gives rise to a scalability issue on link bundling. As can be 
deduced from the previous illustration, a large TE link 
bundling numerous component links will risk encountering 
an intolerably long delay of verifying link connectivity, 
even performing a parallel verification improves little on 
condition that a considerable portion of those component 
links have failed. Therefore, a scalability limitation is 
potentially imposed upon GMPLS-based networks, 
hindering TE links from scaling up to accommodating a 
large quantity of component links. 

B. Control Channel Management 

Specifically designed for control channel management, 
the LMP Hello protocol can be used to maintain control 
channel connectivity between two adjacent nodes and to 
detect control channel failures once a control channel is 
activated. 

According to the current protocol specification, after the 
parameter negotiation finished with a Config and a 
ConfigAck message, any of the two adjacent nodes can 
start sending Hello messages over a control channel. 
However, there is a possibility that both two nodes initiate a 
Hello message concurrently as a control channel is 
bi-directional. Each Hello message contains a RcvSeqNum 
indicating the sequence number of the last Hello message 
received from the adjacent node over this control channel, 
and the first message will have RcvSeqNum=0. In this case 
(see Fig. 2), because both of the two Hello messages 
contain RcvSeqNum=0, each node will regard the received 
message as an error packet with unexpected RcvSeqNum, 
and hence discard it and start to wait for a valid Hello 
message to come. Subsequently, after a HelloInterval timer 
expires, both of the nodes will do retransmission, but 
simply produce the same scene again. Continuously in this 
way, such a scene will be duplicated and, as the 
consequence, each node will be trapped in an endless loop. 
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Fig. 2. The formation of the Hello dead loop. 

The states and logics of operation of a LMP control 
channel, represented by a Finite State Machine (FSM), are 
partially drawn in Fig. 3 to illustrate the situation from 
another viewpoint. In this figure, event 13 and 16 occur 
alternately in persistence, constraining the control channel 
in the Active state and depriving it of the chance of entering 
the Up state. 

ConfRcv
(Node B)

Active Up
5 : evNewConfOK

13: evSeqNumErr
16: evHelloRet

[Notes to the states]
ConfSnd: In the parameter negotiation state, the node periodically sends a
Config message, and is expecting the other side to reply with either a
ConfigAck or ConfigNack message.
ConfRcv: In the parameter negotiation state, the node is waiting for acceptable
configuration parameters from the remote side.
Active: In this state the node periodically sends a Hello message and is waiting
to receive a valid Hello message.  Once a valid Hello message is received, it can
transition to the Up state.
Up: The CC is in an operational state.

[Notes to the events]
3 : evConfDone: A ConfigAck message has been received, acknowledging the
Config parameters.
5: evNewConfOK: New Config message was received from neighbor and
positively acknowledged.
8a : evContenLost: New Config message was received from neighbor at the
same time a Config message was sent to the neighbor. The local node loses the
contention, and the Config message is positively acknowledged.
11: evHelloRcvd: A Hello packet with expected SeqNum has been received.
13: evSeqNumErr: A Hello with unexpected SeqNum received and discarded.
16: evHelloRet: The HelloInterval timer has expired and a Hello packet is sent.

11: evHelloRcvd
(can never occur)

ConfSnd
(Node A) 3 : evConfDone

8a : evContenLost

(occur alternately)

 
Fig. 3. A portion of control channel FSM (adapted from [1]). 

III. PROPOSED SOLUTIONS 

A. Batch-mode Link Connectivity Verification 

We propose a batch-mode link connectivity verification 
procedure as a substitute for the current version described 
in the preceding section. This novel approach performs 

verification in batches, each of which contains a subset of 
all the component data-bearing links, as shown in Fig. 4. 

TE Link

batch1

data link

batch2  
Fig. 4. The concept of a “batch”. 

 
Still consider two nodes and a TE link the same as before. 

Fig. 5 illustrates this new scenario. In the initialization 
stage of the verification, Node A sends a modified 
BeginVerify message which contains a new field informing 
the neighbor of the verify batch size, Ns. Then after 
receiving the acknowledgement from Node B, Node A 
transmits Ns Test messages over the first batch of Ns data 
links simultaneously, one message per link, to the adjacent 
node. At the remote side, once a Test message arrives at a 
certain interface, Node B will do the same mapping and 
marking job as in the scenario illustrated previously (Fig. 1) 
except that the timer resetting action is not needed now. If a 
VerifyDeadInterval timer expires before all the Ns 
anticipated TestStatusSuccess messages arrive, Node A 
recognizes that the rest corresponding data links in this 
batch have failed, so it marks them all as FAILED, and then 
sends a modified TestStatusFailure message to B indicating 
the link failures. To be noted here, the responsibility for 
judging data link failure is shifted from on Node B, as in 
the original protocol, to on Node A. 

Multiple LOCAL_INTERFACE_ID objects are added to 
the TestStatusFailure message in order to enable the remote 
node to locate its own interfaces associating with the failed 
links had the local/remote Interface_Id mappings been 
established before. Such message modification can thereby 
detect failures earlier than the original version which is not 
able to find out these Interface_Ids until a entire round of 
test on all the component links has been completed. If the 
mapping is not available at that time, an optimization, 
fortunately, can solve the problem by testing the data links 
in a defined order known to both nodes, as pointed out in 
[1]. Besides, this modification has another advantage that 
allows all failures belonging to one batch to be reported 
using just a single message, thus accelerating the 
processing and saving the bandwidth. 
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estabMapping
markUP

The 2nd batch

markFAILED
(if feasible)

[Notes to the actions]
markFAILED: Mark
the link as FAILED.

estabMapping;
markUP

Fig. 5. A scenario of the batch-mode link connectivity verification. 

Of course, the last batch may contain less than Ns links 
as N is not always a multiple of the batch size. It does not 
matter, however, because both nodes can be cognizant of 
this fact via calculation. 

To be particularly pointed out, this novel verify scheme 
encompasses both serial processing simply by setting the 
batch size to 1, and parallel processing by setting the size to 
N. 

The new procedure requires the following revisions to 
the original LMP: 

 Remove the VerifyInterval (the interval at which the 
Test messages will be sent) field from the BeginVerify 
message and add a BatchSize field. (Fig. 6) 

 Remove the VerifyDeadInterval field from the 
BeginVerifyAck message, and change this interval 
into a local configuration parameter. (Fig. 7) 

 Add LOCAL_INTERFACE_ID objects to the 
TestStatusFailure message. (Fig. 8) 

0              1              2              3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

Flags (Reserved) 
BatchSize 

Number of Data Links 
EncType (Reserved) Verify Transport Mechanism 

TransmissionRate 
Wavelength 

BatchSize:  32 bits 
     This is the number of data links that will be verified in each batch. 
(Refer to [1] for description of other fields.) 

Fig. 6. The new BEGIN_VERIFY object of the BeginVerify message. 
 
0              1              2              3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

Verify_Transport_Response (Reserved) 
Fig. 7. The new BEGIN_VERIFY_ACK object of the BeginVerifyAck 

message. 
 

<TestStatusFailure Message>::=<Common Header><MESSAGE_ID> 
<LOCAL_INTERFACE_ID>[<LOCAL_INTERFACE_ID>…] 
<VERIFY_ID > 

Fig. 8. The new TestStatusFailure message. 
 

Benefits, as listed below, can be achieved from this 
innovative batch-mode verify scheme: 

 Unified architecture – Serial, parallel, and even mixed 
verification (1<Ns<N; serial inter-batch processing 
plus parallel intra-batch processing) can all be well 
supported by the new mechanism; different processing 
specific to each type is now unified into a common 
architecture. 

 Promoted performance – The overall efficiency of the 
verification is remarkably improved. Mathematical 
calculation is presented below to demonstrate this 
point. 

The variables used are defined in Table 1. 
 

TABLE 1. VARIABLES DEFINITION 
Variable 

name 
Description 

N The number of all the data links to be verified 
Nf The number of all the failed data links 
Nfi The number of the failed data links in the i-th batch 
Ns The batch size 
Nb The number of the batches (Nb =「N／Ns , in which the 

expression「x  means the nearest integer not less than x.」 
T The time span of verifying all the data links once (excluding the 

BeginVerify and the EndVerify stage) 
TBi The time span of verifying the i-th batch (i=1, 2, 3, …, Nb) 
Tdl Average delay of a Test message transmitting over a data link 
Tcc Average delay of a message transmitting over a control channel 

Tproc Average time for processing a message on a node 
Tdead The interval of VerifyDeadInterval 

 
The following premise is also taken: 
Tdead > Tdl + Tcc + Tproc                       (1) 
 
1) Use the original LMP 
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– Serial verification 
The first equation is derived from Fig. 9: 
 

T
dead

TestStatusSuccess

Test

TestStatusAckTest
X
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T cc

TestStatusFailure

TestStatusAckTest (or EndVerify)

A 
su
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sf
ul

 te
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A 
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d 

te
st

 
Fig. 9. Serial processing of the original LMP. 

 
T = (N－Nf)·(Tdl +Tcc+3 Tproc) 

+ Nf·(Tdead + Tproc) 
= (N－Nf)·(Tdl +Tcc) + Nf·Tdead 

+ (3N－2Nf)·Tproc                     (2) 
 
– Parallel verification 
The reference diagram is shown as Fig. 10.  
 
If 0≤Nf <N, 
T = Tdl + Tcc + (N+2)·Tproc + Nf·(Tdead + Tproc). 
(Assuming the last Test message arrives successfully.) 
 
If Nf =N, 
T = N·Tdead + (N+1)·Tproc . 
 
Thus 

Tdl + Tcc + Nf·Tdead + (N+Nf+2)·Tproc , 
T =                        0≤Nf <N      (3) 

    N·Tdead + (N+1)·Tproc ,  Nf =N 
 

T
dead

Test (1)

T dl
T cc

TestStatusFailure

TestStatusAck
Su
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TestStatusSuccess

Test (N)

TestStatusAck

T
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TestStatusFailure

TestStatusAck

...
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N
·
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...
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Fig. 10. Parallel processing of the original LMP. 

 
2) Use the proposed LMP 
Fig. 11 serves as the reference diagram. 

∑
=

=
bN

i
BiTT

1

, in which 

Tdead + 2Tcc + (Ns+2)·Tproc ,    0<Nfi≤Ns, 
TBi =                  

Tdl + Tcc + (Ns+2)·Tproc ,      Nfi=0 
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s Test messages,...

N
s·

T pr
oc
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TestStatusSuccess
messages arrive
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Fig. 11. Batch-mode verification (the i-th batch) of the proposed LMP. 

 
As two special cases, Ns=1 and Ns=N are considered 
respectively: 
 
– Ns=1 (serial verification) 

Tdead + 2Tcc + 3Tproc ,   Nfi=1 
∵TBi =                                   

Tdl + Tcc + 3Tproc ,      Nfi=0 
      Nb=N, 

∴ ∑
=

=
bN

i
BiTT

1

 

= Nf·(Tdead + 2Tcc + 3 Tproc) 
    + (N－Nf)·(Tdl + Tcc + 3 Tproc ) 
  = (N－Nf)·Tdl + (N+Nf)·Tcc 

+ Nf·Tdead + 3N·Tproc                        (4) 

 
– Ns=N (parallel verification) 

Tdead + 2Tcc + (N+2)·Tproc ,  0<Nf≤N 
T =                                      (5) 

Tdl + Tcc + (N+2)·Tproc ,    Nf=0 
 
3) Comparison 

Fig. 12 illustrates the relationship between T and Nf 
for the two different versions of LMP with parameters 
defined in Table 2. 
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 Fig. 12. The relationship between T and Nf. 

 
TABLE 2. PARAMETERS VALUE ASSIGNMENT 

N Tdl Tcc Tdead Tproc 
10 10 ms 10 ms 80 ms 1 ms 

 
Conclusion can be safely drawn as follows (use Told 

to stand for T of the original LMP, and Tnew for T of 
the proposed LMP.): 
· In the parallel situation, usually we have Tnew < 
Told, and the difference between them, Told － Tnew, 
will be augmented sharply as the number of failed 
data links (Nf) increases. 
· In the serial situation, Tnew is only slightly greater 
than Told, and it is crucial to be aware that only when 
verifying a small-scale TE link (e.g. N≤10) could the 
batch-mode scheme regress to choosing serial 
processing. Therefore the difference, Told － Tnew, can 
be confined to a very narrow range. 
· In other situations (1<Ns<N), the performance of 
the batch-mode link verification is expected to vary 
between the corresponding two boundaries (the 
uppermost curve and the lowermost curve). From area 
of the divisions we can deduce that the probability of 
Tnew<Told will be much bigger than that of Tnew>Told. 

 Mitigated scalability limitation – From equation (2), 
we can learn that in parallel verification using the old 
LMP, T is remarkably influenced by Nf and N. It may 
grow much larger as N goes up. On the contrary, using 
the improved version, we know from equation (5) that 
T stays perfectly stable as N increases (Tproc is usually 
negligible), and it is even immutable to Nf. A TE link, 
therefore, is capable of scaling up to a large bundle 
with much more component links accommodated. 

 Enhanced flexibility – Using the proposed LMP, not 
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only is a network node able to be configured to use an 
appropriate batch size according to a specific TE link, 
but it is also allowed to adjust the value dynamically 
in response to the size of a TE link varying. This 
flexibility is especially useful when considering 
implementation issue. For instance, applying 
multithreading technique to implement LMP may be a 
good choice but usually only a limited number of 
active threads can be supported on a computer, or a 
specific size of thread pool is able to achieve better 
performance. On some platforms, multithreading may 
be not even supported. In all the cases, the capability 
of adjusting to a (near-) optimal batch size will 
facilitate desirable network provision, configuration 
and operation. 

 Simplified operation – The VerifyInterval timer is no 
longer needed since it is the initiating node (Node A in 
the previous example) that has the duty of detecting 
link failure, so this node is able to control the progress 
without relying on a timer. Associated tasks are 
thereby got rid of and operation of the procedure is 
simplified. 

B. Privileged Hello Protocol 

Named as Privileged Hello Protocol, our solution is 
designated for solving the problem of creating a dead loop 
during the fast keep-alive phase. The central idea of this 
protocol is straightforward: only one of the two adjacent 
nodes is privileged to initiate the first Hello message. 

The mechanism is derived from a scheme that has 
already been developed to avoid ambiguities produced by 
both two nodes initiating the Hello parameter negotiation 
(this phase will activate a control channel) at the same time. 
In the Privileged Hello Protocol, the node that is granted 
the privilege to transmit the first Hello message is the very 
node that successfully initiates the configuration procedure 
– either the unique node that sends the Config message, or 
one of the two nodes who wins the contention with higher 
Node_Id if both of them send the Config simultaneously. In 
other words, only the node that has received a ConfigAck 
message is permitted to say Hello first, and the other node 
is responsible for replying the greetings. With this 
asymmetric mechanism used, chances for creating the dead 
loop are completely eliminated, and the design goal of the 
original Hello protocol, to maintain control channel 
connectivity and detect control channel failures, is still 
fulfilled without any impairment. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper performs in-depth analyses on LMP defined 
by IETF [1] and points out important weak points lying 
behind two of its four constituent procedures. 
Corresponding solutions are also proposed respectively to 
improve LMP. A batch-mode link connectivity verification 
is first proposed for addressing the performance and 

scalability issues with flexibility enhancement. Next, a 
privileged Hello protocol is proposed to completely 
eliminate the dead-loop malfunction. 

It is also necessary to conduct computer simulations and 
to establish test-beds for carrying out comprehensive 
experiments on LMP, our proposed improvements, and 
further new findings, since LMP, unquestionably, bears 
considerable significance to GMPLS, which is to play a 
crucial role in the next-generation mobile broadband IP 
networks. 
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