
Analyses and Improvements of Link Management Protocol
for GMPLS-based Networks

Tie Luo
Beijing University of Posts and Telecommunications

Beijing, P.R. China
e-mail: tluo@glorisoft.com

G.S. Kuo
National Chengchi University

Taipei, Taiwan 116
e-mail: gskuo@ieee.org

Abstract – Generalized Multiprotocol Label Switching

(GMPLS) is maturing to shape the next-generation mobile
broadband IP networks, which will accommodate diverse
technologies and various systems together. The Link
Management Protocol (LMP), launched under the GMPLS
context and being standardized by IETF, is designed for
managing traffic-engineering (TE) links and verifying the
reachability of control channels. A detailed study of the latest
Internet-Draft on LMP has been conducted. Two important
flaws in two of the four constituent procedures for LMP have
been pointed out and improved by us in this paper. With
regard to the link connectivity verification procedure, a
batch-mode scheme is designed for enhancing its performance,
scalability and flexibility, with theoretical analyses. In respect
of the control channel management, a Privileged Hello
Protocol is introduced to evade the dead-loop malfunction.

I. INTRODUCTION

Next-generation mobile broadband IP networks will
consist of a large variety of technologies and network
systems using Generalized MPLS (GMPLS) to dynamically
provision resources and to provide network survivability.
As a major feature, GMPLS separates signaling and routing
function clearly from data forwarding function to provide a
generic common control plane for diverse technologies that
may be adopted.

For fulfilling the design goal of managing GMPLS-based
networks, Link Management Protocol (LMP) is currently
under the standardization process led by Internet
Engineering Task Force (IETF). LMP runs between
neighboring nodes and is used to manage
traffic-engineering (TE) links and verify reachability of the
control channel. It consists of four procedures, control
channel management, link property correlation, link
connectivity verification, and fault management.

Considerable endeavor has so far been made and the
latest specification of LMP had recently been released by
IETF [1]. Unfortunately, important flaws still exist behind
the current protocol. The so-called Link Connectivity
Verification procedure defined in [1] offers insufficient
support for parallel processing, giving rise to problems
concerning performance and scalability issues. With regard
to the Control Channel Management procedure, a potential
malfunction could occur on Hello messages initiated
concurrently by both neighboring nodes, which can cause a
dead loop as the consequence.

Corresponding solutions to the problems mentioned
above are proposed in this paper respectively. A
batch-mode link connectivity verification, serving as a
substitute for the original counterpart, is proposed by us to
address the performance and scalability issues, additionally
to enhance flexibility as well. To avoid the potential dead
loop, we propose a Privileged Hello Protocol, which
completely eliminates the undesirable possibility using a
simple scheme.

The rest paper is organized as follows. Section II
analyzes the current LMP and identifies its imperfections.
Our solutions are proposed with comparisons in Section III.
Finally in Section IV, concluding remarks are made.

II. ANALYSIS of LMP

A. Link Connectivity Verification

This procedure provides a mechanism that is used to
verify the physical connectivity of the data links, and
dynamically learns the TE link and Interface_Id
associations as well. The procedure should be done initially
when a TE link is established, and subsequently, on a
periodic basis for all unallocated (free) data links of the TE
link.

For performance purposes, data links are likely to be
verified in parallel. Although the current design of LMP
does not exclude this kind of situation, such verification has
not so far been well considered and the support remains
insufficiently provided by the protocol.

Generally, suppose a TE link between Node A and Node
B consists of N unallocated data links among which Nf ones
are broken. Node A initiates a parallel verification on the
TE link by sending a BeginVerify message over a control
channel. After Node B responding with a BeginVerifyAck
message, Node A transmits N Test messages simultaneously,
one per interface, over the N data links.

For the reason that Node B has no way to learn the
neighbor’s intention of performing verification in a parallel
fashion, it has to deal with the matter in a common way.
Upon receipt of each Test message, B maps the local
Interface_ID to the received (remote) Interface_ID and
marks this data link as UP; then it sends a
TestStatusSuccess message over the control channel back to
Node A indicating the health of this data link. On arrival of
the message, Node A does the same mapping and marking
job as B does and then replies with a TestStatusAck

GLOBECOM 2003 - 2992 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

message.
Since Nf messages are lost due to the failed data links, a

timer, name it Tb, which is used to detect such failures,
expires after an observation period (specified by the
VerifyDeadInterval). Concluding that one of the data links
has failed, B notifies A of this information using a
TestStatusFailure message, meanwhile resetting the timer
Tb. Subsequently, another period of VerifyDeadInterval
elapses and the timer Tb expires again, just reproducing the
message handshake. Such a situation will repeat in this way
for Nf times until at last the session is terminated by Node A
transmitting an EndVerify message, which normally occurs
after A has received a sum of N TestStatusSuccess and
TestStatusFailure messages. The above entire scenario is
illustrated in Fig. 1.

Node A Node B
BeginVerify

TestStatusSuccess

TestStatusAck

TestStatusFailure

TestStatusAck

TestStatusAck

BeginVerifyAck

EndVerify

EndVerifyACK

startTimerA

[Notes to the actions]
startTimerA: Start
the VerifyInterval
timer (Ta).
startTimerB: Start
the
VerifyDeadInterval
timer (Tb).
endTimerA: End the
timer Ta.
estabMapping:
establish local/remote
Interface_Id mapping.
markUP: mark the
link as UP.
rstTimerB: Reset the
timer Tb.

startTimerB

endTimerA

TestStatusFailure

estabMapping;
markUP;
rstTimerB

N Test(s), Nf are lost

Ve
rif

yD
ea

dI
nt

er
va

l
Ve

rif
yD

ea
dI

nt
er

va
l

...

...

Δ
t

estabMapping
markUP

rstTimerB

rstTimerB

(N－Nf times)

 Fig. 1. A parallel verification scenario of the original LMP.

Such verification has an undesirable consequence in that
discovering all the failures need spend a period of
Nf·VerifyDeadInterval, whereas in fact a single expiration
of Tb is sufficient enough for Node B to judge that the
expected incoming Nf Test messages have all been lost. To
the extreme, if the whole TE link is broken, i.e., Nf=N, we
will have to tolerate such a long delay of
N · VerifyDeadInterval that the performance of the
procedure will degrade to that of serial processing.

A possible solution may suggest that this embarrassment
can be overcome by Node A transmitting the EndVerify
message immediately after acknowledging the first
TestStatusFailure message originating from Node B. This
EndVerify message, in addition to signifying the session

can be terminated, carries an implication that all the rest
data links without Test message coming out of have failed.
Unfortunately, Node B cannot definitely recognize this
additional meaning because, according to the protocol
specification, the EndVerify message may be sent at any
time when the initiating node, A, desires to end the Verify
procedure.

Besides performance degradation, this undesirability also
gives rise to a scalability issue on link bundling. As can be
deduced from the previous illustration, a large TE link
bundling numerous component links will risk encountering
an intolerably long delay of verifying link connectivity,
even performing a parallel verification improves little on
condition that a considerable portion of those component
links have failed. Therefore, a scalability limitation is
potentially imposed upon GMPLS-based networks,
hindering TE links from scaling up to accommodating a
large quantity of component links.

B. Control Channel Management

Specifically designed for control channel management,
the LMP Hello protocol can be used to maintain control
channel connectivity between two adjacent nodes and to
detect control channel failures once a control channel is
activated.

According to the current protocol specification, after the
parameter negotiation finished with a Config and a
ConfigAck message, any of the two adjacent nodes can
start sending Hello messages over a control channel.
However, there is a possibility that both two nodes initiate a
Hello message concurrently as a control channel is
bi-directional. Each Hello message contains a RcvSeqNum
indicating the sequence number of the last Hello message
received from the adjacent node over this control channel,
and the first message will have RcvSeqNum=0. In this case
(see Fig. 2), because both of the two Hello messages
contain RcvSeqNum=0, each node will regard the received
message as an error packet with unexpected RcvSeqNum,
and hence discard it and start to wait for a valid Hello
message to come. Subsequently, after a HelloInterval timer
expires, both of the nodes will do retransmission, but
simply produce the same scene again. Continuously in this
way, such a scene will be duplicated and, as the
consequence, each node will be trapped in an endless loop.

GLOBECOM 2003 - 2993 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

Node A Node B
Config

ConfigAck

Hello(TxSeqNum=1;RcvSeqNum=0)
Hello(TxSeqNum=1;

RcvSeqNum=0)

DiscardDiscard

Hello(TxSeqNum=1;RcvSeqNum=0)
Hello(TxSeqNum=1;

RcvSeqNum=0)

... (Endless)

H
el

lo
In

te
rv

al

DiscardDiscard

H
el

lo
In

te
rv

al

Fig. 2. The formation of the Hello dead loop.

The states and logics of operation of a LMP control
channel, represented by a Finite State Machine (FSM), are
partially drawn in Fig. 3 to illustrate the situation from
another viewpoint. In this figure, event 13 and 16 occur
alternately in persistence, constraining the control channel
in the Active state and depriving it of the chance of entering
the Up state.

ConfRcv
(Node B)

Active Up
5 : evNewConfOK

13: evSeqNumErr
16: evHelloRet

[Notes to the states]
ConfSnd: In the parameter negotiation state, the node periodically sends a
Config message, and is expecting the other side to reply with either a
ConfigAck or ConfigNack message.
ConfRcv: In the parameter negotiation state, the node is waiting for acceptable
configuration parameters from the remote side.
Active: In this state the node periodically sends a Hello message and is waiting
to receive a valid Hello message. Once a valid Hello message is received, it can
transition to the Up state.
Up: The CC is in an operational state.

[Notes to the events]
3 : evConfDone: A ConfigAck message has been received, acknowledging the
Config parameters.
5: evNewConfOK: New Config message was received from neighbor and
positively acknowledged.
8a : evContenLost: New Config message was received from neighbor at the
same time a Config message was sent to the neighbor. The local node loses the
contention, and the Config message is positively acknowledged.
11: evHelloRcvd: A Hello packet with expected SeqNum has been received.
13: evSeqNumErr: A Hello with unexpected SeqNum received and discarded.
16: evHelloRet: The HelloInterval timer has expired and a Hello packet is sent.

11: evHelloRcvd
(can never occur)

ConfSnd
(Node A) 3 : evConfDone

8a : evContenLost

(occur alternately)

Fig. 3. A portion of control channel FSM (adapted from [1]).

III. PROPOSED SOLUTIONS

A. Batch-mode Link Connectivity Verification

We propose a batch-mode link connectivity verification
procedure as a substitute for the current version described
in the preceding section. This novel approach performs

verification in batches, each of which contains a subset of
all the component data-bearing links, as shown in Fig. 4.

TE Link

batch1

data link

batch2
Fig. 4. The concept of a “batch”.

Still consider two nodes and a TE link the same as before.

Fig. 5 illustrates this new scenario. In the initialization
stage of the verification, Node A sends a modified
BeginVerify message which contains a new field informing
the neighbor of the verify batch size, Ns. Then after
receiving the acknowledgement from Node B, Node A
transmits Ns Test messages over the first batch of Ns data
links simultaneously, one message per link, to the adjacent
node. At the remote side, once a Test message arrives at a
certain interface, Node B will do the same mapping and
marking job as in the scenario illustrated previously (Fig. 1)
except that the timer resetting action is not needed now. If a
VerifyDeadInterval timer expires before all the Ns
anticipated TestStatusSuccess messages arrive, Node A
recognizes that the rest corresponding data links in this
batch have failed, so it marks them all as FAILED, and then
sends a modified TestStatusFailure message to B indicating
the link failures. To be noted here, the responsibility for
judging data link failure is shifted from on Node B, as in
the original protocol, to on Node A.

Multiple LOCAL_INTERFACE_ID objects are added to
the TestStatusFailure message in order to enable the remote
node to locate its own interfaces associating with the failed
links had the local/remote Interface_Id mappings been
established before. Such message modification can thereby
detect failures earlier than the original version which is not
able to find out these Interface_Ids until a entire round of
test on all the component links has been completed. If the
mapping is not available at that time, an optimization,
fortunately, can solve the problem by testing the data links
in a defined order known to both nodes, as pointed out in
[1]. Besides, this modification has another advantage that
allows all failures belonging to one batch to be reported
using just a single message, thus accelerating the
processing and saving the bandwidth.

GLOBECOM 2003 - 2994 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

Node A BeginVerify(with Batchsize)

BeginVerifyAck

EndVerify

EndVerifyACK

The 1st batch

The i-th batch

......

Node B

rstTimerB (once)

Node BNode A

TestStatusSuccess

Ns Test(s), Nfi are lost

TestStatusAck

TestStatusAck

TestStatusFailure(with Interface_IDs)

Ve
rif

yD
ea

dI
nt

er
va

l

estabMapping
markUP

The 2nd batch

markFAILED
(if feasible)

[Notes to the actions]
markFAILED: Mark
the link as FAILED.

estabMapping;
markUP

Fig. 5. A scenario of the batch-mode link connectivity verification.

Of course, the last batch may contain less than Ns links
as N is not always a multiple of the batch size. It does not
matter, however, because both nodes can be cognizant of
this fact via calculation.

To be particularly pointed out, this novel verify scheme
encompasses both serial processing simply by setting the
batch size to 1, and parallel processing by setting the size to
N.

The new procedure requires the following revisions to
the original LMP:

 Remove the VerifyInterval (the interval at which the
Test messages will be sent) field from the BeginVerify
message and add a BatchSize field. (Fig. 6)

 Remove the VerifyDeadInterval field from the
BeginVerifyAck message, and change this interval
into a local configuration parameter. (Fig. 7)

 Add LOCAL_INTERFACE_ID objects to the
TestStatusFailure message. (Fig. 8)

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Flags (Reserved)
BatchSize

Number of Data Links
EncType (Reserved) Verify Transport Mechanism

TransmissionRate
Wavelength

BatchSize: 32 bits
 This is the number of data links that will be verified in each batch.
(Refer to [1] for description of other fields.)

Fig. 6. The new BEGIN_VERIFY object of the BeginVerify message.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Verify_Transport_Response (Reserved)
Fig. 7. The new BEGIN_VERIFY_ACK object of the BeginVerifyAck

message.

<TestStatusFailure Message>::=<Common Header><MESSAGE_ID>
<LOCAL_INTERFACE_ID>[<LOCAL_INTERFACE_ID>…]
<VERIFY_ID >

Fig. 8. The new TestStatusFailure message.

Benefits, as listed below, can be achieved from this
innovative batch-mode verify scheme:

 Unified architecture – Serial, parallel, and even mixed
verification (1<Ns<N; serial inter-batch processing
plus parallel intra-batch processing) can all be well
supported by the new mechanism; different processing
specific to each type is now unified into a common
architecture.

 Promoted performance – The overall efficiency of the
verification is remarkably improved. Mathematical
calculation is presented below to demonstrate this
point.

The variables used are defined in Table 1.

TABLE 1. VARIABLES DEFINITION
Variable

name
Description

N The number of all the data links to be verified
Nf The number of all the failed data links
Nfi The number of the failed data links in the i-th batch
Ns The batch size
Nb The number of the batches (Nb =「N／Ns , in which the

expression「x means the nearest integer not less than x.」
T The time span of verifying all the data links once (excluding the

BeginVerify and the EndVerify stage)
TBi The time span of verifying the i-th batch (i=1, 2, 3, …, Nb)
Tdl Average delay of a Test message transmitting over a data link
Tcc Average delay of a message transmitting over a control channel

Tproc Average time for processing a message on a node
Tdead The interval of VerifyDeadInterval

The following premise is also taken:
Tdead > Tdl + Tcc + Tproc (1)

1) Use the original LMP

GLOBECOM 2003 - 2995 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

– Serial verification
The first equation is derived from Fig. 9:

T
dead

TestStatusSuccess

Test

TestStatusAckTest
X

T
dl

T pr
oc

T cc

TestStatusFailure

TestStatusAckTest (or EndVerify)

A
su

cc
es

sf
ul

 te
st

A
fa

ile
d

te
st

Fig. 9. Serial processing of the original LMP.

T = (N－Nf)·(Tdl +Tcc+3 Tproc)

+ Nf·(Tdead + Tproc)
= (N－Nf)·(Tdl +Tcc) + Nf·Tdead

+ (3N－2Nf)·Tproc (2)

– Parallel verification
The reference diagram is shown as Fig. 10.

If 0≤Nf <N,
T = Tdl + Tcc + (N+2)·Tproc + Nf·(Tdead + Tproc).
(Assuming the last Test message arrives successfully.)

If Nf =N,
T = N·Tdead + (N+1)·Tproc .

Thus

Tdl + Tcc + Nf·Tdead + (N+Nf+2)·Tproc ,
T = 0≤Nf <N (3)

 N·Tdead + (N+1)·Tproc , Nf =N

T
dead

Test (1)

T dl
T cc

TestStatusFailure

TestStatusAck
Su

cc
es

sf
ul

 te
st

s
A

Fa
ile

d
te

st

TestStatusSuccess

Test (N)

TestStatusAck

T
dead

TestStatusFailure

TestStatusAck

...
...

N
·

T pr
oc

...

T pr
oc

Fig. 10. Parallel processing of the original LMP.

2) Use the proposed LMP
Fig. 11 serves as the reference diagram.

∑
=

=
bN

i
BiTT

1

, in which

Tdead + 2Tcc + (Ns+2)·Tproc , 0<Nfi≤Ns,
TBi =

Tdl + Tcc + (Ns+2)·Tproc , Nfi=0

GLOBECOM 2003 - 2996 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

N
fi are lost

TestStatusFailure

T de
ad

TestStatusAck

N
s Test messages,...

N
s·

T pr
oc

(Ns－Nfi
TestStatusSuccess
messages arrive
within Tdead .)

T pr
oc

T cc
T cc

Fig. 11. Batch-mode verification (the i-th batch) of the proposed LMP.

As two special cases, Ns=1 and Ns=N are considered
respectively:

– Ns=1 (serial verification)

Tdead + 2Tcc + 3Tproc , Nfi=1
∵TBi =

Tdl + Tcc + 3Tproc , Nfi=0
 Nb=N,

∴ ∑
=

=
bN

i
BiTT

1

= Nf·(Tdead + 2Tcc + 3 Tproc)
 + (N－Nf)·(Tdl + Tcc + 3 Tproc)
 = (N－Nf)·Tdl + (N+Nf)·Tcc

+ Nf·Tdead + 3N·Tproc (4)

– Ns=N (parallel verification)

Tdead + 2Tcc + (N+2)·Tproc , 0<Nf≤N
T = (5)

Tdl + Tcc + (N+2)·Tproc , Nf=0

3) Comparison

Fig. 12 illustrates the relationship between T and Nf
for the two different versions of LMP with parameters
defined in Table 2.

 1 2 3 4 5 6 7 8 9 10

10
0

20
0

30
0

 4

00

 5

00

 6

00

 7

00

80

0

90

0

 1
00

0

Nf

T (ms)

0

●
288

310
▼

390
▼

1030
▼

470
▼

●
346

●
404

230●

●
462

520
●

578
●

636
●

●
752

●
810761

◆

32◆

112
▲

112
▲

112
▲

112
▲

112
▲

112
▲

112
▲

112
▲

112
▲▲

112

113
◆

194
◆

275
◆

356
◆

437
◆

◆
518

◆
599

◆
680

694
●

811
◆

550
▼

630
▼

710
▼

790
▼

870
▼

950
▼

old LMP, serial verification

new LMP, serial verification

old LMP, parallel verification

new LMP, parallel verification

▲ ▲

◆ ◆

▼ ▼

● ●

 Fig. 12. The relationship between T and Nf.

TABLE 2. PARAMETERS VALUE ASSIGNMENT

N Tdl Tcc Tdead Tproc
10 10 ms 10 ms 80 ms 1 ms

Conclusion can be safely drawn as follows (use Told

to stand for T of the original LMP, and Tnew for T of
the proposed LMP.):
· In the parallel situation, usually we have Tnew <
Told, and the difference between them, Told － Tnew,
will be augmented sharply as the number of failed
data links (Nf) increases.
· In the serial situation, Tnew is only slightly greater
than Told, and it is crucial to be aware that only when
verifying a small-scale TE link (e.g. N≤10) could the
batch-mode scheme regress to choosing serial
processing. Therefore the difference, Told － Tnew, can
be confined to a very narrow range.
· In other situations (1<Ns<N), the performance of
the batch-mode link verification is expected to vary
between the corresponding two boundaries (the
uppermost curve and the lowermost curve). From area
of the divisions we can deduce that the probability of
Tnew<Told will be much bigger than that of Tnew>Told.

 Mitigated scalability limitation – From equation (2),
we can learn that in parallel verification using the old
LMP, T is remarkably influenced by Nf and N. It may
grow much larger as N goes up. On the contrary, using
the improved version, we know from equation (5) that
T stays perfectly stable as N increases (Tproc is usually
negligible), and it is even immutable to Nf. A TE link,
therefore, is capable of scaling up to a large bundle
with much more component links accommodated.

 Enhanced flexibility – Using the proposed LMP, not

GLOBECOM 2003 - 2997 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

only is a network node able to be configured to use an
appropriate batch size according to a specific TE link,
but it is also allowed to adjust the value dynamically
in response to the size of a TE link varying. This
flexibility is especially useful when considering
implementation issue. For instance, applying
multithreading technique to implement LMP may be a
good choice but usually only a limited number of
active threads can be supported on a computer, or a
specific size of thread pool is able to achieve better
performance. On some platforms, multithreading may
be not even supported. In all the cases, the capability
of adjusting to a (near-) optimal batch size will
facilitate desirable network provision, configuration
and operation.

 Simplified operation – The VerifyInterval timer is no
longer needed since it is the initiating node (Node A in
the previous example) that has the duty of detecting
link failure, so this node is able to control the progress
without relying on a timer. Associated tasks are
thereby got rid of and operation of the procedure is
simplified.

B. Privileged Hello Protocol

Named as Privileged Hello Protocol, our solution is
designated for solving the problem of creating a dead loop
during the fast keep-alive phase. The central idea of this
protocol is straightforward: only one of the two adjacent
nodes is privileged to initiate the first Hello message.

The mechanism is derived from a scheme that has
already been developed to avoid ambiguities produced by
both two nodes initiating the Hello parameter negotiation
(this phase will activate a control channel) at the same time.
In the Privileged Hello Protocol, the node that is granted
the privilege to transmit the first Hello message is the very
node that successfully initiates the configuration procedure
– either the unique node that sends the Config message, or
one of the two nodes who wins the contention with higher
Node_Id if both of them send the Config simultaneously. In
other words, only the node that has received a ConfigAck
message is permitted to say Hello first, and the other node
is responsible for replying the greetings. With this
asymmetric mechanism used, chances for creating the dead
loop are completely eliminated, and the design goal of the
original Hello protocol, to maintain control channel
connectivity and detect control channel failures, is still
fulfilled without any impairment.

IV. CONCLUSIONS AND FUTURE WORK

This paper performs in-depth analyses on LMP defined
by IETF [1] and points out important weak points lying
behind two of its four constituent procedures.
Corresponding solutions are also proposed respectively to
improve LMP. A batch-mode link connectivity verification
is first proposed for addressing the performance and

scalability issues with flexibility enhancement. Next, a
privileged Hello protocol is proposed to completely
eliminate the dead-loop malfunction.

It is also necessary to conduct computer simulations and
to establish test-beds for carrying out comprehensive
experiments on LMP, our proposed improvements, and
further new findings, since LMP, unquestionably, bears
considerable significance to GMPLS, which is to play a
crucial role in the next-generation mobile broadband IP
networks.

REFERENCES

[1] J. P. Lang, et al., “Link Management Protocol (LMP),” Internet draft,
draft-ietf-ccamp-lmp-07.txt, November 2002, work in progress.

[2] E. Mannie, et al., “Generalized Multi-Protocol Label Switching
(GMPLS) Architecture,” Internet draft,
draft-ietf-ccamp-gmpls-architecture-04.txt, February 2003, work in
progress.

[3] A. Fredette, et al., "Link Management Protocol (LMP) for DWDM
Optical Line Systems," Internet draft,
draft-ietf-ccamp-lmp-wdm-01.txt, September 2002, work in progress.

[4] John Drake, et al., “Control Channel Bootstrap for Link Management
Protocol,” Internet draft, draft-lang-ccamp-lmp-bootstrap-02.txt,
December 2002, work in progress.

[5] G. Bernstein, et al., “Link Management Protocol Update,” Internet
draft, draft-everdingen-ccamp-lmp-update-00.txt, June 2002, work in
progress.

[6] D. Tappan, et al., "LMP Extensions for Link discovery Using Loss of
Light," Internet draft, draft-rbradfor-ccamp-lmp-lol-00.txt, October
2002, work in progress.

[7] A. Banerjee, et al., “Generalized Multiprotocol Label Switching: An
Overview of Routing and Management Enhancements,” IEEE Comm.
Mag., pp. 144-150, January 2001.

[8] A. Banerjee, et al., “Generalized Multiprotocol Label Switching: An
Overview of Signaling Enhancements and Recovery Techniques,”
IEEE Comm. Mag., pp. 144-151, July 2001.

[9] A. Shami, et al., “Performance Evaluation of Two GMPLS-Based
Distributed Control and Management Protocols for Dynamic Lightpath
Provisioning in Future IP Networks,” Proc. IEEE ICC 2002.

[10] T. W. Um, et al., “Signaling and Control Procedures Using
Generalized MPLS Protocol for IP over an Optical Network,” ETRI
Journal, vol. 24, no. 2, April 2002.

[11] M. Z. Hasan, “Multi-Technology, Multi-Vendor Optical Network
Provisioning – Management Plane Perspective,” OIF, Dallas,
November 2001.

GLOBECOM 2003 - 2998 - 0-7803-7974-8/03/$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

