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Leveraging on the pervasiveness of mobile phones and their rich built-in sensors, partici-
patory sensing recently emerged as a promising approach to large-scale data collection.
Whilst some contributors may be altruistic, many contributors are motivated by receiving
something in return for their contributions, proportional to their level of contributions. In
this paper, we adopt a service allocation approach that motivates users by allocating a
determined amount of compelling services to contributors, as an alternative to other credit
or reputation based incentive approaches. To address two major concerns that would arise
from this approach, namely fairness and social welfare, we propose two service allocation
schemes called Allocation with Demand Fairness (ADF) and Iterative Tank Filling (ITF),
which is an optimization-based approach. We show that: (i) ADF is max–min fair and
scores close to 1 on the Jain’s fairness index, and (ii) ITF maximizes social welfare and
achieves the unique Nash equilibrium, which is also Pareto and globally optimal. In addi-
tion, we use stochastic programming to extend ITF to handle uncertainty in service
demands that is often encountered in real-life situations.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The vast penetration of mobile devices, each with a
variety of built-in sensors such as GPS, accelerometer,
microphone and camera, has recently spurred the emer-
gence of a new sensing paradigm called participatory sens-
ing [1] for large-scale data collection. It refers to an
approach whereby individuals use their personal mobile
devices to sense the environment and report sensed data
in a non-obligated manner. Compared to conventional
wireless sensor networks that use deployed sensors,
participatory sensing removes the cost and hassle of sensor
installation and network maintenance, while achieving
much broader geographical coverage. The big challenge
of prolonging network lifetime in conventional sensor net-
works also becomes a non-issue in participatory sensing
because charging the battery on each mobile device is
now taken care by the users themselves. Hence, participa-
tory sensing is a promising paradigm and has attracted a
lot of research attention and efforts such as [2–4].

However, the success of participatory sensing strongly
relies on user participation in order to obtain a sufficient
and continuous influx of user contributions. So far, most
participatory sensing projects focus on developing applica-
tions, e.g., for environmental monitoring [2,3] and trans-
portation [4], in which participants are recruited on a
voluntary or remunerated basis, which is not sustainable
in the long run [5].
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This brings forth the important issue of incentive or
motivation, which is a key ingredient for the success of
participatory sensing. In this paper, we propose a service
allocation approach that motivates users by allocating a
determined amount of compelling services to contributors,
as an alternative to other credit or reputation based incen-
tive approaches. We leverage on the duality of a participat-
ing user’s role, whereby each user acts as a data contributor
as well as a service consumer, and capture this in a generic
framework for participatory sensing applications which
consists of a service provider that receives the data sent
by contributors and processes and packages the data into
useful data services that are consumed by service consum-
ers. A typical example is traffic monitoring as shown in
Fig. 1, in which bus or car passengers use their smart-
phones to send traffic-related data, such as GPS traces
and bus crowd levels, to a service provider over the Inter-
net via Wi-Fi, GPRS or 3G/4G cellular connections; the ser-
vice provider then aggregates and processes the received
data and, in return, provides real-time traffic information
services for users to consume. These services can be in
the form of browsing or querying information on the traffic
situation, bus arrival times, bus crowdedness, estimated
time to reach a destination, etc. Other examples include
air pollution or noise mapping, flood or fire alerting, and
so on.

In all such cases, a user plays a dual role as a data con-
tributor as well as a service consumer. Thus, motivation
can be provided to data contributors by exploiting their
demand to consume useful and compelling information
services. The basic principle is that the service provider
grants each user a service quota, which determines how
much service the user can consume, based on the amount
of his demand and supply, i.e. contribution. This intrinsic
motivating factor – demand for compelling services – pro-
vides an alternative incentive approach to other credit-
based [6] and reputation-based [7] paradigms.

However, two main concerns are likely to arise from
this service allocation approach. From an individual user’s
Fig. 1. An illustrative participatory sensi
perspective, how fairly will each user be treated? From the
system’s point of view, how well will all the users as a
whole be satisfied? To address these concerns, we propose
two service allocation schemes with the objectives of
maximizing fairness and maximizing social welfare,
respectively. For the former, we develop an Allocation
with Demand Fairness (ADF) scheme which achieves
max–min fairness and scores close to 1 on the well-estab-
lished Jain’s fairness index. For the latter, we develop an
optimization-based Iterative Tank Filling (ITF) scheme
which maximizes social welfare and achieves a unique
Nash equilibrium which, additionally, is Pareto and glob-
ally optimal. Moreover, to take into account practical con-
siderations, we use chance constrained programming, a
stochastic programming technique, to handle uncertainty
in service demands which is often encountered in real-life
situations. The performance of our schemes are evaluated
via simulations and the results demonstrate the effective-
ness of these schemes in meeting their respective
objectives and confirm the theoretical results of our
analysis.

2. Related work

Park and van der Schaar [8] proposed incentive provi-
sioning using an intervention device that can take a variety
of actions to influence users to cooperate and avoid ineffi-
cient resource usage under the assumption that the device
can monitor a random access (e.g., CSMA) network per-
fectly. We focus on a different context, i.e. participatory
sensing, and, related to the resource inefficiency aspect,
we will show that the proposed ITF scheme achieves
Pareto efficiency.

In a study related to incentive for participatory sens-
ing, Lee and Hoh [6] proposed a dynamic pricing mecha-
nism that allows users to sell their sensing data to a
service provider. In order to keep the service provider’s
cost low while retaining an adequate number of partici-
pants, they proposed a reverse auction mechanism to
ng application: traffic monitoring.
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keep the bid price competitive and use ‘virtual participa-
tion credits’ to retain participants. Unlike this one-sided
monetary incentive which may not be sustainable, we
leverage on the dual role of participants as both contrib-
utors and consumers to motivate contributors. Further-
more, monetary incentives usually present a service
provider with the financial risk of not being able to resell
to buyers (partially or completely), while the service allo-
cation approach proposed in this paper avoids this risk.
Another related work is a pilot study conducted in UCLA
by Reddy et al. [9] who investigated the effect of micro-
payments on participatory sensing. The study found that
monetary incentive was beneficial when combined with
altruism and competitiveness, and a major concern of
the participants was fairness. However, they did not
address the issue of fairness in a rigorous manner. In this
paper, we propose a different motivation scheme and
address the fairness issue in detail, both theoretically
and via simulation.
3. System model

The system consists of N users and a service provider.
Each user is a data contributor as well as a service con-
sumer. The service provider receives user contributed data,
processes it using techniques ranging from simple data
fusion to complex data mining, and provides a value-added
information service to the users.

We consider the system in terms of time slots, where
in practice, a slot can range from an hour to a few days
depending on the application. Pertaining to each time
slot, a user i 2 ½1; . . . ;N� is characterized by a quadruple
hwi; ci; Q i; qii, where wi is the user’s contribution level,
ci is the cost incurred (e.g., mobile data charges and bat-
tery drainage), Q i is the amount of service the user
demands, and qi (qi 6 Qi) is the service quota that the ser-
vice provider grants to the user. A user can declare his
demand Qi anytime in the current slot, and the quota qi

will be granted at the end of the current slot after evalu-
ating the contribution level wi and is consumable in the
next slot. Q i and qi are in units such as hours of service
or number of queries, depending on the specific applica-
tion. Methods for evaluating the user contribution wi are
also application dependent and will be discussed in
Section 7.2.

The service provider determines the total amount of
service quota, denoted by Qtot , for each slot, which is to
be allocated to individual users as qi. The value of Qtot

is known to all the users, either as prior knowledge if it
is fixed all the time, or via announcements if it varies
from slot to slot. The quality of service (QoS) of the
system, denoted by W, is characterized by the aggregate
contribution level of all the users and varies over time.
For the sake of generality, our analysis is not coupled to
any specific expression of W as it is usually application
dependent. One possible instantiation of W is
W ¼

PN
i¼1wi, but other forms of W in terms of wi can be

considered.
The problem can thus be stated as: to assign a certain
amount Q tot of service quota to N users according to their
characterizing quadruple hwi; ci; Q i; qii, with the objective
of maximizing fairness (Section 4) or social welfare (Sec-
tion 5), while providing motivation to encourage user
contributions.

4. Service allocation with fairness

From an individual user’s perspective, one would expect
to be treated ‘‘fairly’’ when consuming his desired service.
We define fairness by the amount by which a user i’s
received service quota qi is commensurate with both his
contribution level wi and his demand Q i. This section pre-
sents a scheme called Allocation with Demand Fairness
(ADF) to achieve this objective.

Firstly, let us consider a simple scheme which grants qi

based on wi only. To do this, we gradually increase qi for
each user i at the differentiated rate of wi=

PN
l¼1wl. Once a

user’s demand Q i is reached, we exclude this user and pro-
ceed with the rest of the users in the same way, but with
an updated Qtot . This process can be mathematically
described, by re-indexing the users by j ¼ 1; . . . ;N in
ascending order of Qi=wi (which is the order in which the
users will be fully satisfied), as:

qj ¼min Q j;
wjPN
k¼jwk

� Q tot �
Xj�1

k¼1

qk

 !( )
: ð1Þ

Next, we extend the scheme by taking into account the
user’s demand. Naturally, it is fair to grant qi such that
qi=Qi is proportional to wi when neither of the limits, Q i

or Qtot is reached. One way to do this is by mimicking
the case above, i.e. to increase each qi=Q i at the rate of
wi=
PN

l¼1wl until 1 is reached. However, this does not read-
ily lead to a mathematical or algorithmic abstraction
because, unlike in Eq. (1) where

PN
i¼1qi is capped by

Qtot , the upper bound to
PN

i¼1qi=Q i is not clear whenPN
i¼1Q i > Q tot . To overcome this problem, we increase

each qi at the rate of Q iwi=
PN

l¼1Qlwl until Qi is reached,
whereby the user with the largest wi will obtain the max-
imal qi=Q i first, which fulfils the objective. Thus, the
scheme can be formulated below, by sorting the users
in descending order of wi and re-indexing them by
j ¼ 1; . . . ;N:

qj ¼min Q j;
Q jwjPN

k¼jQ kwk

Q tot �
Xj�1

k¼1
qk

� �( )
: ð2Þ

This is the ADF scheme which is presented algorithmi-
cally as Algorithm 1.

To analyze the properties of ADF, we consider two
important and well-established fairness measures: Jain’s
fairness index [10] and max–min fairness. Jain’s fairness
index is defined as

J ¼
PN

i¼1xi

� �2

N
PN

i¼1x2
i
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Algorithm 1. Allocation with Demand Fairness (ADF)

Input: N;Qtot ; Q
!¼ fQig;~w ¼ fwig

Output: ~q ¼ fqig
1: if

PN
i¼1Qi 6 Qtot then

2: return ~q Q
!

3: end if

4: create I
!¼ fIjgN

j¼1, Ij 2 ½1;N�, such that wI1
;wI2

; . . . wIN

are in descending order
5: for j ¼ 1! N do

6: qIj
¼ Qtot

QIj
wIjPN

k¼j
QIk

wIk

7: if qIj
> QIj

then

8: qIj
 QIj

9: end if
10: Qtot ¼ Qtot � qIj

11: end for
where, in our context, xi , qi=q�i in which q�i is the optimal
(i.e., fairest) service quota to be granted to user i. The max-
imum of Jain’s fairness index is 1, which is achieved when
xi ¼ xj; 8i; j. In line with our objective of fairness, q�i ¼ Q iwi

(ignoring a constant coefficient which does not affect the
result). Thus,

J ¼
PN

i¼1
qi

Qiwi

� �2

N
PN

i¼1
qi

Qiwi

� �2 : ð3Þ

Without loss of generality, suppose there are k
(0 6 k 6 N) users who are fully satisfied, and all the users
are sorted as in (2) and indexed by j. It is fairly straightfor-
ward to show that

qj ¼
Q j; j ¼ 1; . . . ; k

h� Qjwj; j ¼ kþ 1; . . . ;N

(
where

h ¼
Qtot �

Pk
j¼1Q jPN

j¼kþ1Q jwj

and k is determined by 1=wk 6 h < 1=wkþ1. Hence,

J ¼
Pk

j¼1w
�1
j þ ðN � kÞh

h i2

N
Pk

j¼1w
�2
j þ ðN � kÞh2

h i : ð4Þ

We will evaluate Eq. (4) for ADF and several other
schemes in Section 6 through simulations. Here, we give
two special cases that have specific analytical expressions:

� k ¼ 0) J ¼ 1: in this case, the maximum fairness is
achieved, and all users are equally satisfied. The expres-
sion for h is h ¼ qi=ðQ iwiÞ ¼ Qtot=

PN
l¼1Q lwl.

� k ¼ N ) J ¼ ð
PN

i¼1w
�1
i Þ

2
=ðN

PN
i¼1w

�2
i Þ: in this case, all

users are fully satisfied, and J ¼ 1 if all the users con-
tribute equally.

The result for the other fairness measure, max–min fair-
ness, is given below.
Proposition 1. The ADF scheme achieves weighted max–min
fairness. That is, increasing user i’s demand-normalized
service quota, qi=Qi, weighted by 1=wi, viz. qi=ðQiwiÞ, must
be at the cost of decreasing some other user j’s qj=ðQjwjÞ,
where qj=ðQjwjÞ < qi=ðQiwiÞ.

We omit the proof as this proposition is self-evident
from the above.

Remark. Our definition of fairness so far does not take
cost, i.e. monetary cost per unit of data contribution, into
account. In fact, to incorporate cost such that a user’s
service quota qi should also be commensurate with his cost
ci, the steps in the analysis above only need to be modified
by plugging ci into Eq. (3) to obtain

J ¼
PN

i¼1
qi

ciQiwi

� �2

N
PN

i¼1
qi

ciQ iwi

� �2

which is the new Jain’s index to maximize, and into Eq. (2)
to obtain

qj ¼min Q j;
cjQ jwjPN

k¼jckQ kwk

Q tot �
Xj�1

k¼1

qk

 !( )
which is the new ADF solution. However, adopting this
scheme in participatory sensing is problematic because,
unlike many other contexts where cost is a monotonically
increasing function of the output (or contribution level, in
the context of participatory sensing), the cost profile in
participatory sensing is unlikely to be a monotonically
increasing function of the contribution level since produc-
ing the same contribution level can incur drastically differ-
ent costs to different users due to their different contexts
and behaviors. If cost is taken into account in this manner
to address fairness, a user who incurs disproportionately
high cost while producing merely ordinary contribution
will be awarded more service quota than the original
ADF scheme, which would actually make it unfair. On the
other hand, cost does affect a user’s satisfaction, which
we shall handle using utility in the next section.

As a side note, user demands are assumed to be honestly
declared, i.e., according to users’ true needs. Handling
untruthful declarations is outside the scope of this paper.
In fact, the ITF scheme which will be presented in the next
section has the effect of discouraging users from making
false declarations of their demands, as will be explained
in Section 5.1.

5. Service allocation with social welfare maximization

From a system perspective, the service provider would
aim to maximize social welfare, which is defined as the
aggregate user utility (which is a measure of satisfaction)
received from consuming the service provided by the sys-
tem, minus his incurred cost, such as the monetary cost per
unit of data contribution. At the same time, the system
aims to motivate users to contribute at higher levels.
Hence, the objective is formulated as maximizing

S ,
XN

i¼1

wiui
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which is the aggregate contribution-weighted user utility,
where ui is user i’s utility. The structure of this objective
function implies that priority will be given to users with
larger wi.

We define the utility ui as two possible forms:

ðaÞ ui ¼ U W
qi

ciQ i

� �
; ðbÞ ui ¼ U W

qi

Qi

� ��
ci; ð5Þ

where qi=Qi reflects the extent a user’s demand is satis-
fied,2 and W as the system QoS which will also affect a user’s
utility. The forms (a) and (b) differ in where the normalizing
effect of the cost takes place and we will investigate both.3

UðxÞ : Rþ ! R is a monotonically increasing and strictly con-
cave function of x, which reflects the elasticity of user satis-
faction as is common in the literature (e.g., [11]). In this
paper, we consider the form of UðxÞ ¼ logð1þ xÞ; x P 0,
which is also used in [11–13], and the problem is thus for-
mulated below:

maximize : ðaÞ S ¼
XN

i¼1

wi log 1þW
qi

ciQ i

� �
;or ð6Þ

maximize : ðbÞ S ¼
XN

i¼1

wi log 1þW
qi

Q i

� �
=ci; ð7Þ

s:t: qi 2 ½0;Qi�; 8i ¼ 1; . . . ;N ð8ÞXN

i¼1

qi 6 Q tot: ð9Þ

In this section, we develop a scheme to solve problem (a)
while leaving problem (b) to Appendix A for interested read-
ers, since both problems follow the same line of reasoning
and (b) turns out to be simpler than (a). Now, let us consider
Eq. (6). In order to maximize S, the solution should give pri-
ority to users with larger marginal weighted utility, i.e., lar-
ger wiW=ðciQ i þ qiWÞ,4 or equivalently, smaller ðciQi

W þ qiÞ=wi.
Based on this insight, we convert the original nonlinear pro-
gramming problem into the problem of ‘‘filling iced tanks’’
depicted in Fig. 2. Each user i is represented by a tank with
bottom area wi, and the tank has been preoccupied by frozen
ice of volume ciQi=W (and hence of height ciQi

W =wi). Tank i is left
with an empty space of volume Qi (and hence of height Q i=wi)
to be filled with water. All the tanks are placed back to back as
if they are virtually connected without internal separators.
Consequently, the empty space will be filled consecutively
in the order of r, s, t,. . . as shown in Fig. 2. To solve the
problem, we propose an Iterative Tank Filling (ITF) algorithm
which iteratively fills the space in the depicted order until
all the tanks are fully filled or the total volume of water,
Qtot , is used up.5 The pseudo-code is given as Algorithm 2.
2 Whether a user can benefit by simply (and unilaterally) declaring too
high or too low Qi will be discussed in Section 5.1.

3 What constitutes cost and how it is calculated will be elaborated in
Section 7.3.

4 The optimization variables are qi; W is not subject to the differentiation
with respect to qi because it has been determined by all the wi ’s and is not a
function of qi being solved.

5 This iced-tank filling problem is different from the water filling (WF)
problem in convex optimization [14] or wireless communications [15] in
that: (i) these tanks can have different water levels during and after filling,
because each tank comes with a closed ‘‘lid’’, whereas WF fills a single and
open vessel with one sweeping water level, and (ii) WF will always fully
allocate the total resource (e.g., power), which is not the case in ITF.
Proposition 2. The computational complexity of ITF is OðN2Þ.

Proof. In the worst case, icei and tanki are all different (i.e.,
2N distinct numbers), and hence each iteration will
increase the highest water level to only one of these 2N
numbers. Therefore, The main loop will execute at most
2N � 1 times. Inside the main loop, lines 7–10, 20, and 25
each has a complexity of OðNÞ. The proposition is thus
proven.

Note that ITF does not (and should not) assume that the
tanks have already been sorted in any order, which would
otherwise decrease the computational complexity of ITF.

Algorithm 2. Iterative Tank Filling (ITF)

Input: N; Qtot ; W; Q
!
¼ fQig; ~w ¼ fwig; ~c ¼ fcig

Output: ~q ¼ fqig
1: if

PN
i¼1Qi 6 Qtot then

2: return ~q Q
!

3: end if

4: ~q ~0; ice ficei ¼ ciQ i=ðwiWÞg;
tank ftanki ¼ icei þ Qi=wig

5: while Qtot > 0 do
6: ——– Find space to fill in this iteration ——–
7: bot  minificeig; botind arg minificeig
8: w 

P
i2botindwi //bottom area

9: cap1  miniRbotindficeig
10: cap2  miniftankig
11: h minfcap1; cap2g � bot //height
12: ——————- Fill the space ——————-
13: if w � h < Qtot then
14: Qtot ¼ Qtot �w � h
15: else {the last iteration of filling}
16: h Qtot=w //readjust height
17: Qtot  0
18: end if
19: for all i 2 botind do
20: icei ¼ icei þ h; qi ¼ qi þ h � wi

21: end for
22: ————— Remove full tanks —————–
23: if cap2 6 cap1 or cap1 ¼ 1 then
24: for all k 2 fijtanki ¼ cap2g do
25: tankk  1; icek  1
26: end for
27: end if
28: end while

Theorem 1. Service provisioning via ITF ensures that, for any
i; j, if wi

ciQi
P wj

cjQj
^ ci 6 cj, then ui P uj.

Proof. Consider two cases of the output ~q:

1. qi=wi P qj=wj (Fig. 3a). Multiplying this with wi
ciQi

P wj

cjQj

gets qi
ciQi

P qj

cjQj
. Hence UðW qi

ciQ i
ÞP UðW qj

cjQj
Þ (for any non-

decreasing function Uð�Þ), i.e., ui P uj.
2. qi=wi < qj=wj. Since wi

ciQi
P wj

cjQj
() ciQi

W =wi 6
cjQj

W =wj,
meaning that the reciprocal of marginal weighted util-
ity or the ice level of i is lower than that of j, priority will



Fig. 2. Filling iced tanks. The tanks are sorted in ascending order of
height, but the ice (gray area) levels are not necessarily in order. Numbers
r, s, t,. . . denote the order of empty spaces to be filled, which also
corresponds to the iteration number of the ITF algorithm.
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be given to i (ITF will start filling tank i earlier than j).
However, since the outcome is qi=wi < qj=wj, it implies
that tank i must have been fully filled and the height
of original empty space Qi=wi < Qj=wj is as shown
in Fig. 3b. As ci 6 cj, we have 1=ci ¼ qi

ciQi
�

1=cj P qj

cjQj
) logð1þ W

ci
ÞP logð1þW qj

cjQj
Þ ) ui P uj. h
Corollary 1. Service provisioning via ITF ensures that, for any
i; j, if wi

Q i
P wj

Qj
^ ci 6 cj, then ui P uj.

The implication of Corollary 1, as a relaxed form of The-
orem 1, is that a user who makes higher contribution with
respect to his demand and incurs lower cost, will be guar-
anteed to receive higher utility.

Theorem 2. The output of ITF is the optimal solution to
problem (6). In other words, the solution given by ITF
maximizes the social welfare.
Proof. The Lagrangian function for problem (6) is

Lð~q;~kÞ ¼
XN

i¼1

wi log 1þW
qi

ciQi

� �
þ
XN

i¼1

ki Q i � qið Þ

þ k0 Q tot �
XN

i¼1

qi

 !
(a) Case 1.

Fig. 3. Proof of T
where ki’s are the Lagrangian multipliers associated with
the respective constraints. Thus, the Kuhn–Tucker condi-
tions are formulated as

@L
@qi
¼ wi

ciQi
W þ qi

� ki � k0 6 0;

qi
wi

ciQi
W þ qi

� ki � k0

 !
¼ 0;

ð10Þ

qi � Q i 6 0;
kiðqi � Q iÞ ¼ 0; i ¼ 1;2; . . .

ð11Þ

XN

i¼1

qi � Q tot 6 0; ð12Þ

k0

XN

i¼1

qi � Q tot

 !
¼ 0; ki P 0; i ¼ 0;1;2; . . . ð13Þ

In the simplest case where
PN

i¼1Q i 6 Qtot , ITF will output
qi ¼ Q i. This conforms to the Kuhn–Tucker conditions by
letting k0 ¼ 0 (i.e. unbound constraint) due to (12) and
ki ¼ wi=ðciQi

W þ Q iÞ (i.e. bound) due to (11). In the other case

where
PN

i¼1Q i > Q tot , ITF will fill the tanks until the water

level reaches l0 ¼ ðciQi
W þ qiÞ=wi (cf. Fig. 2) for any i that sat-

isfies 0 < qi < Q i (half-filled). For these half-filled tanks,
ki ¼ 0 due to (11), and hence k0 ¼ 1=l0 due to (10). For
the full tanks (qj ¼ Q j), their tank heights must be lower

than l0 according to ITF, i.e., ðcjQj

W þ Q jÞ=wj 6 l (cf. Fig. 2). This

fulfills (10) which requires kj ¼ wj=ð
cjQj

W þ Q jÞ � k0 P 0
(since k0 ¼ 1=l0). Finally, for the empty tanks (qk ¼ 0), their
ice levels must be higher than l0, i.e., ckQk

W =wk P l0. As kk ¼ 0
(due to (11)), these tanks still comply with (10) which
requires k0 P wk=

ckQk
W (recall k0 ¼ 1=l0).

This proves that the solution given by ITF satisfies the
Kuhn–Tucker conditions. Furthermore, because the objec-
tive function (6) is strictly concave and all the constraints
(8) and (9) form a convex polyhedron, the optimal solution
that satisfies the Kuhn–Tucker conditions is unique. The
theorem is thus proven. h
Expanding on the proposed ITF service allocation
approach, we now address two other major issues in the
following sub-sections.
(b) Case 2.

heorem 1.
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5.1. Deriving optimal service demands

One issue is to derive the optimal service demands, Q i,
that users declare. As each user’s service quota is capped
by his declared demand, a user may be tempted to declare
a higher demand in order to, possibly, get a larger share of
service quota. On the other hand, as a service allocation
scheme should be transparent to users, a user can realize
from ITF that declaring a higher demand would be disad-
vantageous to him since he will be classified as a ‘‘hard-
to-satisfy’’ user and given a lower priority to be granted
service. Note that this has the effect of discouraging users
from misbehaving in their demand declaration, as men-
tioned in Section 4. Therefore, there should exist an optimal
service demand for each user.

There are two ways to define the optimality: (i) global
optimality – the objective function (6) achieves the maxi-
mum over the entire domain of optimization variables;
(ii) Pareto optimality – no user’s utility can be improved
without making some other user’s utility worse off. These
two kinds of optimality are not achieved simultaneously,
in general.

In addition, it is also desirable to make the optimal
point ‘‘stable’’: any user should not have an incentive to
deviate from his optimal demand unilaterally, i.e. when
other users stick to their optimal demands.

Under these circumstances, a game-theoretic approach
is appropriate. In the sequel, we derive a solution and show
that it achieves all of the aforementioned properties:
global maximal, Pareto optimal, and Nash Equilibrium.

We model the participatory sensing problem as a non-
cooperative game [16]. The game players are the N users.
Each player’s strategy is to decide how much demand, i.e.,
Qi, to declare and his strategy space is Rþ. Each user’s payoff
is his utility ui. The game rule is prescribed by ITF, which
maps an N-tuple of user strategies Q

!¼ fQ ig 2 ðRþÞ
N to an

N-tuple of user payoffs~u ¼ fuig, by determining the service
quota~q ¼ fqig.

A common game-theoretic approach is to find a strat-
egy profile, prove it to be a Nash Equilibrium (NE), and sub-
sequently prove uniqueness, if possible. In this paper, we
take a different and simpler approach: we first find the
necessary and sufficient conditions for a NE, and then
derive the NE and prove its uniqueness in one go.

Lemma 1. The necessary and sufficient conditions that a
Nash Equilibrium of the above-defined game satisfies are

C1 :
XN

i¼1

Q i ¼ Q tot

C2 : hi ¼ hj; 8i; j ¼ 1; . . . ;N

8><>: ð14Þ

where hi ¼ Q ið1þ ci=WÞ=wi.
Proof. Necessity: Prove by contradiction.
Condition C1: Suppose, instead,

PN
i¼1 Qi < Qtot , then

qi ¼ Qi; 8i. Obviously, a user can increase his Qi to Q 0i > Qi

and be granted q0i > qi provided other users do not change
strategy. If, otherwise,
PN

i¼1Qi > Qtot , there is at least one
tank that is not fully filled. Let k be one such tank and
bk ¼ ckQk=ðWwkÞ denote its ice level. Let hi be tank i’s
ice+water level and hmax ¼maxifhijqi > 0g. In the case that
bk P hmax (i.e., qk ¼ 0), clearly user k can decrease demand
Qk such that bk drops to b0k < hmax, and be granted q0k > 0.
In the other case that bk < hmax (i.e., 0 < qk < Qk), user k
can decrease Qk to Q 0k such that qk < Q 0k < Qk and, accord-
ingly, ice level bk drops to b0k ¼ ckQ 0k=ðWwkÞ, and be
granted: (i) q0k > qk if 9j : qk=wk þ b0k < hj 6 hmax, where

the left hand side (qk=wk þ b0k) is k’s ice+water level as if his
water level remains unchanged, or (ii) q0k ¼ qk otherwise
(such a user j does not exist; i.e., k is the only partially-
filled tank (0 < qk < Qk) and the rest of the tanks are either
fully filled (with their hj 6 qk=wk þ b0k) or empty (with their
hj > hmax)). In summary, user k will have an incentive to

deviate from his strategy if
PN

i¼1Qi–Qtot . Therefore,PN
i¼1Qi ¼ Qtot must hold.
Condition C2: Suppose 9i; j : hi – hj, and WLOG, hi < hj.

Since
PN

i¼1Qi ¼ Qtot , all the users are fully satisfied. Recall
that hi and hj are the ice + water level of users i and j,
respectively. If user i increases his demand (slightly) to Q 0i
such that h0i ¼ Q 0i=wi þ ciQ

0
i=ðWwiÞ < hj still holds, then,

according to the ITF game rule, user i will be granted
q0i > qi ¼ Qi where the additional quota essentially comes
from user j (and others, if any). This means that user i will
have an incentive to change his strategy unilaterally.
Hence, Condition 2 must also hold.

Sufficiency:
If both Conditions C1 and C2 are satisfied, all the tanks

have the same height and are fully filled. Suppose any user,
say i, changes his strategy such that: (1) Q 0i > Qi, then i’s ice
level will increase, which actually lowers i’s priority to
receive service. On the other hand, all the other tanks are
fully filled. Hence, tank i will continue to have the same
volume, Qi, of water (though its ice + water level will be
above the other tanks) with an empty space of Q 0i � Qi left
in the tank; (2) Q 0i < Qi, then obviously he will receive a
lower quota of q0i ¼ Q 0i. In summary, user i will either be
indifferent (in case 1) or unwilling (in case 2) to switch his
strategy. Hence, a strategy profile satisfying both C1 and C2
is a Nash Equilibrium (NE). h
Theorem 3. The optimal strategy profile Q � ¼ fQ �i g where

Q �i ¼
wi=ðWþ ciÞPN

l¼1
wl

Wþcl

Q tot ð15Þ

is a unique Pareto-efficient Nash equilibrium, and achieves the
global optimum.
Proof. It can be shown that the equation system (14) can
be translated into a N � N homogeneous system of linear
equations whose determinant is non-zero. Hence, this sys-
tem has a unique solution which leads to Eq. (15).

The Pareto efficiency follows from condition C1 of
Lemma 1.
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Under the NE strategy (15), qi ¼ Qi and each user
receives the maximum utility umax

i ¼ logð1þW=ciÞ for
given ~w and ~c. This achieves the global maximum of (6)
term-wise, which is a sufficient condition for (6) to achieve
its global maximum:

Smax
a ¼

XN

i¼1

wi logð1þW=ciÞ: � ð16Þ
5.2. Handling uncertainty in service demands

The other issue is to handle the uncertainty in service
demands which is often encountered in reality. As declared
demands are essentially future demands (Q i is the amount
of service a user plans to consume in the next slot), a user
needs to estimate his future actual demand. Denote the
(unknown) actual demand in the next slot by eQ i, which
is a random variable, and the estimated demand by bQ i.
Thus, the previously discussed Q i is actually bQ i, and bQ i is
the ‘‘expected value’’ of eQ i. To reformulate the problem
of taking the actual demand eQ i into account, it is improper
to simply replace the original constraint qi 6 Qi with
qi 6

eQ i which essentially leads to qi 6 inffeQ ig ¼ 0. It is
also improper to replace qi 6 Qi with qi 6

bQ i as will be
elaborated below, assuming eQ i 	 NðbQ i;riÞ.

5.2.1. Expected-value method
It is tempting to use the constraint qi 6

bQ i which simply
converts the problem with uncertainty into the original
deterministic optimization problem whose solution is
already given by ITF. This is called an expected-value
method (EVM) as it uses EðeQ iÞ ¼ bQ i to simplify the
constraints.

To examine whether EVM is suitable for our particular
problem, we conducted a simulation study for a daily-slot-
ted system with N ¼ 100 users. The demand Qi and allo-
cated service quota qi are formulated as the duration of
service required by user i. For ease of description, denote
by Uða; bÞ the uniform distribution in interval (a; b), and
by N trðl;r; a; bÞ the truncated normal distribution with
mean l and standard deviation r and bounded in the
range of [a; b]. The simulation was set up as follows:bQ i ¼ Uð0;1Þ (day), eQ i ¼ N trðbQ i;0:25bQ i; 0;1Þ, contribution
wi ¼ Uð0;1Þ (Mb), and cost ci ¼ N trðwi;wi;0;3Þ (i.e., the
expected cost is one monetary unit per Mb of contribu-
tion), Q tot ¼ 0:75

PN
i¼1
bQ i and W ¼ 10�3PN

i¼1wi (Gb).
According to EVM, we simply replace the original Q i in

ITF with bQ i to run the algorithm. The results are shown in
Fig. 4a, where 45 out of 100 users were found to have
exceeded their actual demands eQ i, which results in signif-
icant resource wastage since a user would not consume
more than his actual demand. Zooming in on users 1–10
as shown in Fig. 4 b, we see that qi=

eQ i can be as high as
212%.

These observations indicate that EVM can cause signifi-
cant service over-provisioning and, perhaps more
importantly, the service provider has no control over such
over-provisioning. The consequence is that users will be dis-
couraged from contributing because any user is likely to be
granted a large share of service without the commensurate
contribution, which works strongly against any incentive
scheme.

5.2.2. Chance constrained programming
Now that we have seen that EVM is not suitable for our

particular problem when there is uncertainty in the service
demands, we use the chance constrained programming
(CCP) [17] technique to tackle it.

First, we need to reformulate the problem with
uncertainty more rigorously, for which we introduce the
following probabilistic constraints:

Prðqi 6
eQ iÞP 1� ai; 8i ¼ 1; . . . ;N; ð17Þ

where ai’s are prescribed probabilities. Each of these N
constraints means that qi is capped by (all the realizations
of) eQ i in 1� ai of the time, or alternatively, qi has a chance
of ai to exceed eQ i.

In CCP terms, the inequality (17) imposes individual
chance constraints on the objective function, where ‘‘indi-
vidual’’ relates to the fact that each stochastic constraint
qi <

eQ i is transformed into a chance constraint individu-
ally. A variant is called joint chance constraints which,
however, does not capture our problem as well as (17).
Nonetheless, we present it in Appendix B for interested
readers.

Thus, the original problem is reformulated as:

maximize S ¼
XN

i¼1

wi log 1þW
qi

ci
bQ i

 !
;

s:t: Prðqi 6
eQ iÞP 1� ai; 8i ¼ 1; . . . ;N;

qi P 0; 8i ¼ 1; . . . ;N;XN

i¼1

qi 6 Q tot:

ð18Þ

The objective function uses bQ i instead of eQ i (which is a
random variable), because a user’s utility is determined
when he is granted qi based on his declaration bQ i, instead
of eQ i. We also note that, with the introduction of the chance
constraints (17), the service provider has one more lever to
encourage a higher level of user contributions by associat-
ing ai with user contribution, e.g., as ai ¼ a0wi=

PN
l¼1wl

where a0 is a scaling factor.
Problem (18) is a stochastic programming problem and

we solve it using CCP as follows. Denote the CDF of eQ i by
Fið�Þ, and thus

Prðqi 6
eQ iÞP 1� ai () FiðqiÞ 6 ai:

Denote by ciðpÞ the quantile function of eQ i, which is defined
as

ciðpÞ , inffsjFiðsÞP pg:

Since Fið�Þ is a monotonically increasing function, it follows
that

FiðqiÞ 6 ai () qi 6 ciðaiÞ: ð19Þ

Furthermore, eQ i 	 NðbQ i;riÞ as assumed by EVM, we
use the probit function to solve for ciðaiÞ. The probit func-
tion is the quantile function for the standard normal distri-
bution and can be calculated via straightforward numerical



(a) EVM. 45 cases of over-
provisioning.

(b) EVM. Zoomed-in view of
users 1–10.

(c) CCP. 4 cases of over-
provisioning.

Fig. 4. Solving the problem with uncertainty (i.e. the chance constrained problem (18)) using EVM and CCP, respectively. N ¼ 100 users. The staircase line
represents a realization of all the eQ i ’s. Blue dots are cases where qi 6

eQ i and red crosses are qi >
eQ i (over-provisioning). The vertical axis stands for eQ i and

qi . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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computation or simple table look-up. Denote by za the
a-quantile of the standard normal distribution. As
ðeQ i � bQ iÞ=ri 	 Nð0;1Þ, (19) can be transformed into

qi � bQ i

ri
6 zai

() qi 6
bQ i þ rizai

; ð20Þ

where zai
can be obtained via numerical computation or

standard table look-up. For instance, z0:05 ¼ �1:65;
z0:025 ¼ �1:96.

Thus, the chance constraints (17) are converted into
deterministic constraints (20), thereby allowing us to
develop a solution scheme, which we call ITF-CCP, by mod-
ifying Algorithm 2 in the following way:

� Input: replace Q
!

with bQ!¼ fbQ ig and add ~r ¼ frig.
� Line 4: replace icei and tanki with icei ¼ ci

bQ i=ðwiWÞ and
tanki ¼ ci

bQ i=ðwiWÞ þ ðbQ i þ rizai
Þ=wi, respectively.

Now we run ITF-CCP with ai ¼ 0:05 for the same 100
users as in EVM (also with the same realization of eQ i, for
a fair comparison). This new set of results is shown in
Fig. 4c where it can be seen that there are only 4 cases of
service over-provisioning, which is consistent with the
‘‘exceeding’’ probability ai (0.05). This shows that the
occurrences of over-provisioning are now under control.

A side effect is that, as bQ 0i , bQ i þ rizai
< bQ i, there will

be extra resources left when Qext , Qtot �
PN

i¼1
bQ 0i > 0. To

overcome this, we can allow qi to ‘‘burst’’ above bQ 0i when
Qext > 0, but still cap qi by the actual demand eQ i in order
to avoid over-provisioning. As eQ i is only realized during
service consumption, we allocate Q ext after a user has con-
sumed his granted quota in the subsequent slot (since qi is
granted at the end of the current slot), based on the first-
come-first-served (FCFS) principle. Note that: (i) user moti-
vation to contribute is not compromised because obtaining
service via a burst is non-guaranteed (opportunistic) as it
depends on the availability of Q ext and other users’ service
consumption, unlike the guaranteed service quota granted
by ITF-CCP, and (ii) FCFS does not lead to each user rushing
to use up his granted quota in order to take advantage of
the burst, because a user will not know the availability of
Qext until he uses up his granted service quota.
6. Performance evaluation

In this section, we evaluate the performance of the four
proposed schemes, ADF, ITF, NE and ITF-CCP, via simula-
tion. For a more meaningful comparison, we also add two
baseline schemes:

1. Equal Allocation (EA): all the users share the total
service quota equally, i.e., qi ¼ Qtot=N.

2. Demand-based Allocation (DA): each user is
granted a service quota of qi ¼ Qtot � Q i=

PN
l¼1Q l

when
PN

l¼1Q l > Q tot , and qi ¼ Q i when
PN

l¼1Q l

6 Q tot .

Similar to Section 5.2, the system is daily-slotted with
N=100 users. Qi ¼ Uð0;1Þ (day), Qtot ¼ Uð0:5;1Þ �

PN
i¼1Q i,

and the rest of the simulation setup remains the same. In
the case of NE, Q �i is computed according to (15). In the
case of ITF-CCP, if Qext > 0, users burst as follows: let
ti 2 Uðqi;1Þ be the time when a user uses up his granted
service quota qi, upon which he realizes via server notifica-
tion or by querying the server that there is extra quota, and
hence will try to maximize his own benefit by continu-
ously consuming service until he reaches his actual
demand eQ i or Qext is used up. This is equivalent to running
a further round of ITF by setting Qtot ¼ Q ext , icei ¼ ti,
tanki ¼ ti þ ðeQ i � tiÞ

þ
, and wi ¼ 1.

6.1. Macro-level performance

This sub-section evaluates performance at the system
level, in terms of Jain’s fairness index as defined by Eq.
(3), and social welfare as defined by Eq. (6).

Fig. 5 presents the results. Each data point is averaged
over 100 rounds of simulation, and we also plot upper
and lower 95% confidence limits around the sample means.

In the fairness aspect, Fig. 5 a clearly shows that the ADF
scheme outperforms the other schemes and closely
approaches the maximum of Jain’s index, 1, with a score
of 0.92. As for social welfare (Fig. 5b), the first observation,
which is not surprising, is that NE is the clear winner, as is
theoretically proven by Theorem 3. On the other hand, the
Q �i computed by NE may not necessarily reflect the users’



(a) Jain’s fairness index. (b) Social welfare.

Fig. 5. Performance comparison between 6 schemes: EA, DA, ADF, ITF, NE and ITF-CCP. The sample size for each data point is 100. Error-bars represent 95%
confidence intervals.

Table 1
‘‘Unwelcome’’ users vs. ‘‘normal’’ users.

6 The approximately linear relationship in spite of the existence of logð�Þ
is because W qi

ciQ i
is small and logð1þ xÞ 	 x for small x.
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real needs, and hence other schemes which allow the users
to declare their demands should still be considered. In that
case, ITF is the best scheme and achieves 94% of the max-
imum that NE achieves. In the case of coping with uncer-
tainty, ITF-CCP achieves 85.2% of the NE maximum. The
reason for the slight drop is that ITF-CCP takes stricter con-
straints to avoid over-provisioning when demands are
uncertain. Bursting, as an auxiliary mechanism, only helps
marginally, because (i) it only takes effect when Q ext > 0,
which is a rare case because Qtot is usually well belowPN

i¼1Q i, (ii) the maximum burst amount for each user is
capped by a limited amount of ðeQ i � tiÞ

þ
, (iii) FCFS is not

optimized for maximizing social welfare (e.g., no priority
is given to users with larger marginal utility). These are
the trade-offs a service provider should take into consider-
ation when dealing with uncertainty.

Moreover, this set of results indicate the non-existence
of a panacea solution which performs the best for both
objectives simultaneously. Therefore, a service provider
should first decide on its targeted objective for the specific
application, and then choose the appropriate scheme.

6.2. Micro-level performance

This sub-section zooms in and examines the perfor-
mance at the individual users’ level. Specifically, we look
at four representative users summarized in Table 1. The
population size is still N ¼ 100 and the remaining 96 users
are all ‘‘normal’’ (or baseline) users (the same as User 4). As
user parameters are fixed in this setting, it makes sense to
exclude NE and ITF-CCP from the comparison. System
parameters remain the same as in Section 5.2.

In Fig. 6a, we compare the service quota each user
received against his demand, i.e., qi=Q i. Under ADF, all
users except for User 2 reaches	75% which is the total ser-
vice availability level (recall that Q tot ¼ 0:75

PN
i¼1Qi). User 2

contributes only half of what the other users contributed,
and, in return, he is allocated only 37.5% of his demand,
which is also half that of the others. This shows that ADF
scheme encourages higher user contributions. User 1 ben-
efits more in terms of absolute service quota, qi, because
ADF does not discriminate against high-demand users. In
sharp contrast, ITF grants users 1–3 zero service. The rea-
son is that they are classified as ‘‘hard-to-satisfy’’ or
‘‘unwelcome’’ users, following the philosophy of ITF. As
such, priority is given to the remaining 97 ‘‘normal’’ users
who equally share Qtot and obtain a qi=Qi even slightly
higher than 75%.

Fig. 6b gives each user’s utility. From the above, it is
easy to understand that, under ITF, only User 4 receives
positive utility which is also slightly higher than the max-
imum of other schemes. Under ADF, User 2 receives lower
utility corresponding to the lower qi as in Fig. 6a, User 3
receives lower utility because of his higher cost as per
the definition of utility in Eq. (6).6 User 1 receives the same
utility as normal users because ADF tries to make qi=Qi com-
mensurate with wi and thereby removes the difference
between User 1 and normal users.

It is worth noting that, while User 2 is under-privileged
in both ADF and ITF, he (undesirably) obtains the same
amount of service as normal users under EA and DA. This
clearly demonstrates the effectiveness of the built-in
mechanism to encourage a high level of contributions in
the proposed ADF and ITF schemes.



Fig. 6. Performance of ‘‘unwelcome’’ users vs. ‘‘normal’’ users.

Table 2
‘‘Welcome’’ users vs. ‘‘normal’’ user.
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Now, we investigate the other scenario with ‘‘welcome’’
users to see if and how they benefit from the proposed
schemes. Table 2 gives the user setting and the remaining
users (5–100) are the same as the normal user (User 4).

The simulation results are given in Fig. 7. Regarding
demand-normalized service quota, we see that User 1
achieves qi=Qi 
 1:5 under the EA scheme, which would
lead to wastage of resource. On the other hand, DA equal-
izes qi=Q i for all users, thereby not motivating any ‘‘good’’
users. ADF rewards User 2, as desired, and not User 1 and 3,
because it aims to fairly allocate qi=Q i only and does not
take cost into account. ITF, at last, can be viewed as the
best scheme among the four because all the good users
(1–3) receive higher demand-normalized service quota
than normal users, which encourages a high level of user
contributions.

With respect to user utility (Fig. 7b), we see that User 2,
though contributing highly, is not better off than normal
users under EA and DA. This will adversely dampen the
morale of good contributors. On the contrary, ADF and
ITF both show favour to User 2 and, among these two
schemes, ITF also satisfies User 1 and 3 more than ADF,
which is desirable and can be understood by comparing
with Fig. 7a. The reason that User 3 receives apparently
higher utility than other users is because of the definition
of utility (Eq. (5)) and the values of qi=Q i shown in Fig. 7a.

Finally, we note that the approximately linear relation-
ship between Fig. 6a and b is not reproduced between
Fig. 7a and b. This is because W qi

ciQi
is no longer small
enough in this case, which renders the rule of
logð1þ xÞ 	 x inapplicable.

7. Discussion

7.1. Relationship between fairness and social welfare

In general, it is well accepted that fairness and social
welfare are two contradictory objectives. Indeed, they are
even divergent in our participatory sensing context where
the definition of social welfare involves cost but fairness
does not (otherwise, the varying user cost profile will
result in unfairness, as explained in Section 4). In fact, even
in the case of equalized costs or proportional costs, we
show below that the two objectives are still not simulta-
neously achievable.

7.1.1. Equalized costs
Assume all users bear the same cost. Let us look at User

1 and 2 in Table 2. Sufficient for demonstration purposes,
consider the system with only these two users and a total
quota of Q tot ¼ 0:5. We can show without much difficulty
that, in order to maximize Jain’s fairness index as defined
in Eq. (3), we should allocate the two users with q1 ¼ 0:1
and q2 ¼ 0:4, which achieves J ¼ 1 (the maximum). One
can also easily verify that running ADF as per Eq. (2) will
yield the same solution.

Now, consider the social welfare. The above solution
leads to S ¼ 0:5Uð0:8WÞ þ Uð1:6WÞ, regardless of any con-
crete form of Uð�Þ. Based on the strict concavity of Uð�Þ,
we further have

S ¼ 1:5� 1
3

Uð0:8WÞ þ 2
3

Uð1:6WÞ
� �

< 1:5U
0:8
3

Wþ 3:2
3

W
� �

¼ 1:5U
4
3

W
� �

:

Next, we need to show that the right hand side is
achievable. Indeed, the solution of q1 ¼ 1=6 and q2 ¼ 1=3
leads to

S ¼ 0:5U
4
3

W
� �

þ U
4
3

W
� �

¼ 1:5U
4
3

W
� �

:



(a) Service quota relative to user demand. (b) Individual user utility.

Fig. 7. Performance of ‘‘welcome’’ users vs. ‘‘normal’’ users.
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In fact, this solution of q1 ¼ 1=6 and q2 ¼ 1=3 can be
obtained by ITF and a quick way to verify is by referring
to Fig. 2.

Therefore, it becomes evident that the fairness maxi-
mizing solution does not maximize social welfare, and vice
versa.
7.1.2. Proportional costs
Assume all users are equally cost-effective in contribut-

ing, i.e., ci=wi ¼ cj=wj; 8i; j. Now, consider User 2 and 3 in
Table 2 and, still, Q tot ¼ 0:5. In this case, it can be shown
that the solution of q1 ¼ 1=3 and q2 ¼ 1=6, which can be
obtained via either ADF or ITF, maximizes both fairness
and social welfare. However, this cannot be generalized.
To see this, let Q3 ¼ 1 instead. Then, the optimal solution
to maximizing fairness is q1 ¼ q2 ¼ 0:25 which can be
obtained using ADF and achieves J ¼ 1. The social welfare
under this solution is S ¼ UðWÞ þ 0:5UðWÞ ¼ 1:5UðWÞ. Let
us now consider a different solution of q1 ¼ 7=18 and
q2 ¼ 1=9 which yields S ¼ Uð14

9 WÞ þ 0:5Uð49 WÞ. For evalua-
tion purposes, take W ¼

P
iwi and UðxÞ ¼ logð1þ xÞ, and

we obtain S ¼ 1:37 for the first solution and S ¼ 1:46 for
the second solution. This again demonstrates that the fair-
ness maximizing solution does not maximize social wel-
fare, and vice versa. In fact, the second solution can be
obtained by ITF too.

This section corroborates our simulation results in Sec-
tion 6.1 that there is no one-size-fits-all solution, and con-
sequently, it is the service provider’s responsibility to
decide which objective, fairness or social welfare, to aim
for.
7.2. Evaluating contribution level

The contribution level wi quantifies the value or useful-
ness of user contributed data. While the exact method of
evaluating this depends on the specific application, this
section provides a number of illustrative examples.

In general, a user’s contribution can be assessed in
terms of its intrinsic value or extrinsic value. The intrinsic
value is conveyed by the contributed data itself. For
example, suppose the application is to estimate a parame-
ter denoted by x, such as travel speed or target location,
and user i’s contributed measurement is yi. Then, his con-
tribution wi can be defined as the reduction of uncertainty in
estimating x by incorporating yi. A formal definition, which
is based on information utility, can be found in [18].
Another example, based on a similar reasoning, is to use
the value of information (VoI) [19].

The extrinsic value is an external attribute associated
with the contributed data but cannot be conveyed by the
data itself. Examples include user reputation, signal
strength and sensor accuracy [4]. It usually pertains to the
contributing entity (such as a user or device) and/or the
context (such as time or location), and is especially useful
when obtaining the data involves additional cost, or when
evaluating the intrinsic value is difficult. For example, in a
decision fusion application, a user’s contribution (e.g., deci-
sion on the presence of a phenomenon of interest (PoI)) can
be evaluated by the user’s historical performance (how
accurate were his decisions) without knowing the current
data, which can be formulated as a likelihood ratio as in
[20]. Another example is the Mahalanobis distance [18]
which characterizes how likely a node or user is to provide
the most useful information (the most reduction of
uncertainty in the context thereof) without getting the
contributed data.
7.3. Implementation considerations

Whichever scheme chosen by the service provider can
be executed on a server farm or cloud. The server has all
the information needed, including wi; ci; Q i of all the users
and Qtot ; W and N, based on which it assigns qi following
the algorithms presented above. Here, we briefly explain
how the service provider can calculate a user’s cost ci.
The major component of ci is the mobile data charge
incurred by the user when making a contribution. This
can be calculated using the user’s mobile data plan
obtained from the user’s registration information, the
timestamp of the contribution (e.g., peak or off-peak
times), and the amount of data transmitted. The other
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minor component is the user’s battery drainage, which can
be gauged from the user’s phone model specification as
well as his contribution time profile.

If needed, the service provider can feed back individual
parameters such as wi and ci to the corresponding user
and announce common parameters such as Qtot ; W and N.
This is particularly needed in the NE case where each user
needs to calculate his optimal Q �i in order to declare it.

Finally, for the sake of user convenience, the declaration
of Q i can be automated by using the application running on
each client (e.g., smartphone) that makes user contribu-
tions. The application periodically sends Qi to the server
based on the user’s historical demands, unless the user
specifically intervenes to modify the value.
8. Conclusion

Participatory sensing offers a promising approach to
large-scale data collection, but requires a steady stream
of user data contributions in order to be successful. As an
alternative to monetary or reputational incentives, we
have presented a service allocation-based approach that
leverages on the duality of the roles played by participants
to motivate users to make data cointributions by allocating
different quantities of compelling services that they desire
to consume. We proposed two schemes, ADF and ITF, with
the objective of maximizing fairness and social welfare,
respectively, while at the same time encouraging user con-
tributions. Our analysis and simulation results show the
effectiveness of these schemes in achieving their respec-
tive objectives. Two tailored variations, NE and ITF-CCP,
have also been presented to provide the optimal equilib-
rium and to handle uncertainty in declared service
demands.

In our future work, we plan to extend the current case
where there is only a single service provider, to the case
where there may be multiple service providers.
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Appendix A. Solving problem (b) (Section 5)

This section sketches the solution to problem (7), fol-
lowing the same line of thought as solving problem (a).
First, we calculate the reciprocal of marginal weighted
utility Qi=Wþqi

wi=ci
. Accordingly, we convert the optimization

problem into a iced-tank representation like Fig. 2, with
the following differences: the bottom area of each tank
changes to wi=ci, the ice volume of each tank changes to
Qi=W, and the empty space of each tank changes to Q i. Very
importantly, note that the volume (and hence height) of ice
and that of the empty space of each tank, are now propor-
tional to each other (with a constant coefficient W). There-
fore, sorting the tanks in order of tank heights is equivalent
to sorting the tanks in order of ice levels, meaning that a
user who is given a higher priority to receive service quota
(due to lower ice level) will surely be satisfied earlier (due
to lower tank height). Therefore, the problem is simpler
than (a) and so is the corresponding solution algorithm,
which we call ITF-(b), for which the pseudo-code is
omitted for brevity.

Without much difficulty, we can show that all the pre-
viously given theorems, corollaries and lemmas still hold,
except for the following changes:

� In Lemma 1, hi should change to hi ¼ ciQ i=wi.
� In Theorem 3, the optimal strategy profile should

change to
Q �i ¼
wi=ciPN
l¼1wl=cl

Qtot : ðA:1Þ
Finally, the CCP version of ITF-(b), which we call
ITF-CCP-(b), can be obtained in the same way as ITF-CCP
from the ITF scheme, with the only difference that

tanki ¼ icei þ
bQ i þ rizai

wi=ci
:

Appendix B. Joint chance constraints

As opposed to the individual chance constraints (17), a
joint chance constraint is in the following form:

Pr qi 6
eQ i;8i ¼ 1; . . . ;N

� �
P 1� a: ðB:1Þ

It requires all the users to satisfy qi 6
eQ i in 1� a of the

time, or equivalently, the probability that at least one user
is granted qi >

eQ i must be less than a. This does not char-
acterize our problem better than (in fact, not as well as) the
individual chance constraints. In addition, as (17) associ-
ates a probability ai to each user i, the service provider
can leverage this to provide further motivation via user dif-
ferentiation, which (B.1) lacks. Nonetheless, we provide the
treatment below for interested readers.

In general, the calculation of joint chance constraints
involves dealing with multi-dimensional distributions.
Fortunately, the eQ i’s in participatory sensing can be treated
as being independent of each other. Hence, assumingeQ i 	 Nðli;riÞ, (B.1) can be broken down into

YN
i¼1

Pr qi 6
eQ i

� �
P 1� a()

YN
i¼1

erfc
qi � liffiffiffi

2
p

ri

� �
P 2� 2a

ðB:2Þ

Unfortunately, an explicit form for the upper limit to qi

is not obtainable from (B.2), and one has to resort to a
stochastic simulation-based approach. For this, the reader
can refer to a stochastic simulation-based genetic algo-
rithm proposed in [21], where the initialization process,
selection, crossover, and mutation operations are the
same as general genetic algorithms except that stochastic
simulation is employed to check the feasibility of new
offspring (i.e., solution) and to handle stochastic
constraints.
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