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Adversarial examples (AE) are malicious test-data samples (typically images) generated by apply-
ing carefully calculated perturbations to clean samples. The added perturbations are usually human-
imperceptible but the AE can fool a machine learning (ML) model to make misclassifications. Al-
though multiple methods were proposed to generate AE, the ability to generalize is very limited; that
is, they easily overfit to their source, single, white-box ML models and the generated AE rarely work
for other models. In this paper, we propose a black-box attack approach that crafts transferable AE
that can attack a wide range of ML models without knowing those model details. Our novel method
consists of an elastic momentum (EM) that expedites gradient descent to avoid early overfitting, and
a random erasure (RE) technique that increases the diversity of perturbations and reduces gradient
fluctuations. Our method can be applied to any gradient-based attacks to make those attacks become
more transferable. We evaluate our proposed method by attacking seven state-of-the-art (SOTA) deep
learning models and compare against five SOTA attacks; we also attack nine advanced defense mech-
anisms that are integrated into the above models. Our results demonstrate significant improvement on
the attack success rate (ASR) and transferability when using our method alone, and that it can also
be easily applied to other baseline methods (which are gradient-based) to substantially improve their
performance as well.

Keywords: Adversarial example, deep learning, neural networks, computer vision, fast gradient sign
method.
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1. Introduction

Deep Neural Networks (DNNs) have made resounding success in computer vision tasks.
However, they are vulnerable to adversarial examples (AE), which are data samples (typ-
ically images) that are perturbed by human-imperceptible noises yet result in misclassifi-
cations. This can cause serious safety and security consequences in applications such as
autonomous driving and medical diagnosis. The transferability of AE is an active research
area [7, 8, 12, 18, 20, 22, 35, 37, 38, 40, 45] that studies how well an AE created to attack
(fool) a “source” model can successfully fool other “target” models as well. The ratio-
nale of studying this is that (1) from an attacker’s perspective, good transferability implies
that one can launch black-box attacks on target models (without knowing their internal
structure, algorithmic details, or parameters); (2) from a defender’s perspective, studying
it provides insight into understanding the failure and vulnerability of DNNs and how to
design DNNs that are robust to AE.

The techniques proposed in the literature to improve the transferability of AE include
gradient or momentum based methods [7, 20, 35, 37], ensemble methods [18, 22], image
transformations based methods [8,20,40,45], and network architecture alterations [12,38].
A major issue of these techniques attempt to address is that AE created on a source model
(in order to attack it) can be easily trapped into the exclusive blind spots of the source model
and can hardly generalize to other (target) models; in other words, this can be viewed as an
problem of AE overfitting.

In this paper, we propose a new method of crafting AE and thereby improving their
transferability. This method consists of two techniques: elastic momentum (EM) and ran-
dom erasure (RE). We first introduce EM into the AE generation process to compute gradi-
ents in a much expedited manner insofar as the training will converge earlier than reaching
the overfitting region. We also propose to incorporate RE, which is a data augmentation
technique, into the AE crafting procedure for the first time. The contributions of this paper
are summarized as follows:

• We introduce a new black-box approach of crafting transferable AE by proposing
EM and a new usage of RE. EM generalizes the conventional momentum and
the Nesterov’s momentum methods by computing gradients over a flexible look-
ahead horizon, and RE increases the diversity of adversarial perturbations and
helps stabilize gradient fluctuations.

• Besides transferability, our proposed method is very flexible in that it can be ap-
plied to any existing gradient-based attacks to enhance their effectiveness.

• Through extensive evaluation with 5 recent baseline methods, 7 target deep learn-
ing models, and 9 advanced defense mechanisms, we demonstrate the superior
transferability of our proposed black-box attack approach.

The reminder of this paper is organized as follows.Section 2 reviews the related work
on AE attacks and defenses. Preliminary formulations on AE are discussed in section 3.
Section 4 presents our proposed approach to boosting AE transferability. The performance
of our method is then evaluated in comparison to the state-of-the-art methods in section 5.
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Finally, Section 6 concludes the paper.

2. Related work

2.1. Adversarial Attacks

Based on adversary’s knowledge to the model, adversarial attacks can be grouped into
white-box attacks, black-box attacks. In white-box setting, one assumes the attackers pos-
sess perfect knowledge about the target model, including the architecture, parameters, and
gradient of the loss w.r.t. the input. Most methods adopt the gradient information of the
target model to launch adversarial attacks under the white-box setting. For example, Fast
Gradient Sign Method (FGSM) [10] generates an adversarial example by taking a single
step within a small distance ϵ along the loss function’s gradient direction, Project Gradient
Descent (PGD) [24] extends FGSM by iteratively taking multiple small gradient steps and
projecting the generated adversarial example onto the ϵ-sphere around the clean sample at
each step, and Carlini and Wagner Attack (C&W) [3] reformulates the constrained loss into
an Lagrangian form and adopts Adam [15] for optimization. However, white box attacks
are almost unrealistic in real applications because the model structure and parameters are
usually hidden from the attackers.

Based on the different level of adversary’s knowledge to the model, black-box attacks
can be further grouped into three scenarios, including score-based, decision-based and
transfer-based attack. Score-based black-box attacks can acquire the output probabilities
by querying the target model, and the gradient can be estimated through queries. For ex-
ample, Zeroth Order Optimization (ZOO) [4] estimates the gradient by finite differences
and then adopts C&W attacks based on the estimated gradients. Decision-based black-box
attacks can only solely rely on the predicted classes of the queries, this setting is more chal-
lenging since the target model only provides discrete hard-label predictions. [5] formulates
the hard-label black-box attack as a real-valued optimization problem which can be solved
by any zeroth order optimization algorithm. Transfer-based black-box attacks require the
least knowledge of the target model which are based on the transferability of adversarial
examples [31]. Transfer-based black-box attacks are the topic we study in this work where
we apply white-box attacks on surrogate models to find adversarial examples that are then
transferred to black-box target models. In this setting, the most important aspect is to im-
prove the transferability of adversarial examples so that transfer-based black-box attacks
can be made more effective in real world scenarios. Many works have been proposed to
this direction. Momentum Iterative Method (MIM) [7] integrates a momentum term into
the gradient calculation which stabilize the update direction and boost the transferability by
a large extent. The Diverse Inputs Method (DIM) [40] applies the gradient of the randomly
resized and padded input for transferable adversarial example generation. Advance gradi-
ent calculation and data augmentation are the key parts in creating adversarial examples
with high transferablity, in this work, we are going further along this direction by propos-
ing elastic momentum and random erasure to boost the adversarial transferability by a large
margin.
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2.2. Defend against Adversarial Attacks

Due to the threat of adversarial examples, extensive research efforts have been put on
building robust models to defend various against adversarial attacks. There are roughly
three lines of research direction on adversarial robustness. The first one is adversarial train-
ing [10, 24, 32], which inject the generated adversarial samples into the training data to
help model discriminate adversarial examples. For example, [24] proposes to augment the
training data with adversarial examples crafted by PGD attack which remains the state-
of-the-art defense to date. While adversarial training is promising, it is computationally
expensive and hard to scale to large-scale datasets [17].

The second line of defenses proceeds by input transformation. Specifically, this kind of
approaches firstly preprocess the input images to rectify adversarial perturbations without
reducing the classification accuracy on benign images. The input transformation methods
include random resizing and padding [39], JPEG compression [9], bit-depth reduction [41],
total variance minimization [11], autoencoder-based denoising [19], and so on. However,
this kind of defenses can cause shattered gradients or vanishing/exploding gradients, which
can be evaded by adaptive attacks [1].

The last category is certified defenses, which are mathematical provably robust to the
worst-case attacks under some assumptions. The motivation of certified defenses is to end
the long-standing arms race between adversarial defenders and attackers. Recent certified
defenses [6, 42] have been made scalable to ImageNet, showing the applicability of this
type of defenses.

Besides above, model ensemble is another effective defense strategy in practice which
leverage the outputs from an ensemble of individual models [21, 27]. Model ensemble can
be integrated with the above defenses such as ensemble adversarial training [32] which
greatly boost the robustness of adversarial training.

3. Preliminaries

Let x be a benign image, y the corresponding true label and f(x; θ) the classifier with
parameters θ and which outputs the prediction result. Let J(x, y; θ) denote the loss function
(e.g., cross-entropy loss) of the classifier f . We define an adversarial attack as finding an
adversarial example xadv that satisfies ∥xadv − x∥p ≤ ϵ but incurs misclassification to the
model, i.e., f(x; θ) ̸= f(xadv; θ). Here ∥·∥p denotes p-norm and we consider p = ∞ in this
paper to be consistent with previous works. Mathematically, given a benign (clean) example
x, we seek to find an AE xadv as the solution to the following constrained optimization
problem:

argmax
xadv

J(xadv, y; θ), s.t.
∥∥xadv − x

∥∥
∞ ≤ ϵ (1)

As mentioned earlier, gradient-based methods have been shown to be the most effec-
tive to solve the above problem and we focus on this category of methods, for which the
representative ones are described below.

Fast Gradient Sign Method (FGSM). FGSM [10] is the first gradient-based attack
which crafts an adversarial example xadv by attempting to maximize the loss function
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J(xadv, y; θ) with a one-step update:

xadv = x+ ϵ · sign(∇xJ(x, y; θ)),

where ∇xJ(x, y; θ) is the gradient of loss function with respect to x, and sign(·) denotes
the sign function.

Iterative Fast Gradient Sign Method (I-FGSM). I-FGSM [16] extends FGSM to an
iterative version:

xadv
t+1 = xadv

t + α · sign(∇xadv
t

J(xadv
t , y; θ)), (3)

xadv
0 = x,

where α = ϵ/T is a small step size and T is the number of iterations.
Momentum Iterative Fast Gradient Sign Method (MI-FGSM). MI-FGSM [7] inte-

grates a momentum term into I-FGSM and achieves much better transferability:

gt+1 = µ · gt +
∇xadv

t
J(xadv

t , y; θ)

∥∇xadv
t

J(xadv
t , y; θ)∥1

, (4)

xadv
t+1 = xadv

t + α · sign(gt+1),

where g0 = 0 and µ is a decay factor.
Nesterov Iterative Fast Gradient Sign Method (NI-FGSM) [20] integrates Nes-

terov’s accelerated gradient (NAG) [26] into the iterative attack method, by replacing xadv
t

in (4) with x̃adv
t which is defined as

x̃adv
t = xadv

t + α · µ · gt (5)

Other notable methods for boosting gradient-based adversarial attacks are described be-
low as well, some of which are also image transformation methods (DIM, TIM, SIM) and
we will use as our baselines in addition to the above. Diverse Inputs Method (DIM) [40] ap-
plies random resizing and padding with a given probability to the inputs and uses the trans-
formed images for gradient calculation. Translation-Invariant Attacks Method (TIM) [8]
generates more transferable AE by optimizing the perturbation over a set of translated im-
ages. Scale-Invariant attack Method (SIM) [20] uses scaling rather than translation as the
data augmentation technique. Variance Tuning Gradient-based attack (VNI-FGSM) [35]
considers the gradient variance of the previous iteration to tune the current gradient to
stabilize the update direction. The Admix Attack method (Admix) [36] mixes the input
image with a small portion of another randomly selected image and calculates the gradi-
ent based on an ensemble of scaled copies of mixed image. Adam Iterative Fast Gradient
Tanh Method (AI-FGTM) [44] replace the momentum algorithm and the sign function with
Adam and the tanh function which boost the indistinguishability and transferability of ad-
versarial examples. Object based Diverse Input (ODI) [2] draws an adversarial image on
a 3D object which effectively diversifies the input by leveraging an ensemble of multiple
source objects and randomizing viewing conditions.

Despite some improvement, the above prior works have limited success rate on un-
known target models especially when target models have protection or defense in place [6].
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4. Proposed Method

4.1. Elastic Momentum

We make two key observations. First, the main reason why integrating momentum benefits
AE computation is because the momentum essentially combines several steps of (poten-
tially discounted) gradients together to help stablize gradient descent and obtain a more
robust direction of convergence. Second, the reason why Nesterov’s accelerated gradient
can benefit it even further is because it computes the gradients based on an estimated next-
step AE, rather than the last-step AE, which speeds up the training.

Thus, our basic idea is as follows. First, generalize the prediction of next-step AE,
by allocating a flexible look-ahead horizon for computing an estimated future AE. Next,
compute the gradient using that future AE to obtain a more far-sighted momentum, which
accelerates the convergence (with reduced number of iterations) and thereby prevents over-
fitting.

Formally, an AE xadv is computed iteratively as follows:

xem
t = xadv

t + α · σ · gt, (6)

gt+1 = µ · gt +
∇xem

t
J(xem

t , y; θ)

∥∇xem
t

J(xem
t , y; θ)∥1

, (7)

xadv
t+1 = xadv

t + α · sign(gt+1). (8)

The momentum term g accumulates previous gradients with a decay factor µ, while the
gradient is not computed based on the current AE xadv

t but a future AE xem
t estimated over

a look-ahead horizon. The parameter σ is critical: although µ has to be a value extremely
close to 1, as experimentally shown by [7], σ is independent of µ (as opposed to NI-FGSM)
and could take a value much larger than 1, which essentially means that we can use gt to
approximate gt+1, gt+2, ... and tune the length of this look-ahead horizon to achieve the
best transferability. For this reason, we call the momentum term g an elastic momentum
(EM). Fig. 1 illustrates our method EM as compared to NI-FGSM.

Our approach also generalizes MI-FGSM and NI-FGSM which can be viewed as spe-
cial cases of ours: When σ = 0, we obtain the momentum iterative method MI-FGSM;
when σ = µ, we obtain Nesterov’s momentum method NI-FGSM. Note, however, that we
typically do not use these σ values in order to achieve acceleration and thus better per-
formance. In fact, our method gives us flexibility to control the converging process via σ,
in order to reach a local optimum before hitting the overfitting region, thereby obtaining
better AE transferability.

4.2. Using Random Erasure in AE Generation

Previous work [40] has demonstrated that random transformations of input images such
as random resizing and random padding could boost the transferability of adversarial ex-
amples. However, what specific type of transformation is better remains an open question.
In our work, we hypothesize that partial occlusion would make the resulting AE more
transferable, and the rationale is as follows. A classification model usually examines dif-
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Fig. 1: Illustration of EM as compared to NI-FGSM.

ferent regions of an image to recognize its category, which is why a white-box attack could
achieve near 100% attack success rate whereas black-box transferred AE are much less
likely to fool target models since those models tend to ignore the adversarial regions. How-
ever, when an image is partially occluded, a model will classify it based on the overall
object structure. Thus, if we use occluded adversarial images during AE generation, the
AE generation process will make the non-occluded region of the object structure adver-
sarial, and as a result, the generated AE will be more transferable and more likely to fool
other target models. Similar techniques are also proposed in [34,43] as a generic data aug-
mentation technique for deep learning to address data insufficiency which bring benefits to
the task of image classification, object detection and person re-identification. In this paper,
however, we apply RE to AE generation which has never been explored before. In addi-
tion, we identify that RE is the most suitable candidate for AE transferability through our
comparison with many other data augmentation techniques such as translation, scaling, ro-
tation, resizing, padding, weighting, and even a nearest neighbor method that we created
on our own.

Given an image I with width W and height H , we apply RE by randomly selecting a
rectangle region Ie in I and removes the pixels in the region Ie. This region is determined
as follows. Denoting by Se the area of the region Ie, we randomly generate an erasure ratio
s in the range [0, sh] where sh < 1, and use s = Se

S to determine the value of Se, where S

is the area of the input image I , i.e., S = W ×H . Now, denote the aspect ratio of Ie by re.

The height and width of Ie are therefore determined by He =
√
Se × re and We =

√
Se

re
,

respectively. To determine the location of Ie, we randomly pick a point P = (xe, ye) ∈ I ,
until xe + We ≤ W and ye + He ≤ H , upon which we finalize the coordinates of the
erasure region Ie = (xe, ye, xe +We, ye +He). An example is given in Figure 2.

To remove the pixels in the region Ie, there are three typical choices, namely using
0s, 1s and random noise, to fill the region. Our experiments show that they do not make a
notable difference in performance. Hence, we adopt random noise in this paper.
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Raw Image

Fig. 2: Example: Applying RE to an raw image to generate four resulting images.

Now, we reformulate the original objective function (1) by incorporating RE, as

argmax
xadv

1

m

m∑
i=0

J(REi(x
adv), y; θ),

s.t.
∥∥xadv − x

∥∥
∞ ≤ ϵ,

(9)

where m is the number of erasure copies, and i = 0 represents the input image without
erasure.

Thus, our AE crafting process, integrated RE, is as follows. At each iteration t, with
probability p, we apply RE to the input image xadv

t to generate a collection of m erased
images, and compute their losses and the average gradient 1

m

∑m
i=0 ∇xJ(REi(x

adv), y; θ),
which will be used to compute the momentum g. With probability 1− p, we keep the input
image xadv intact.

To incorporate RE into EM, however, the above xadv needs to be replaced by xem

defined by (6). Therefore, our final proposed method is formulated as

xem
t = xadv

t + α · σ · gt, (10)

gt+1 = µ · gt +
1
m

∑m
i=0 ∇xJ(REi(x

em
t ), y; θ)

∥ 1
m

∑m
i=0 ∇xJ(REi(xem

t ), y; θ)∥1
, (11)

xadv
t+1 = xadv

t + α · sign(gt+1). (12)

Algorithm 1 summarizes our proposed method, where RE(x; p) denotes that we apply
RE with probability p.

5. Experiments

This section reports the evaluation of our proposed method, EM-RE-FGSM.

5.1. Experiment Setup

Dataset. We use an image dataset [28] which is a curated portion of ImageNet and is widely
used such as by [20, 35]. This dataset randomly selects one clean and correctly classified
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Algorithm 1 Proposed Method: EM-RE-FGSM

Input: A clean example x with ground-truth label y; a classifier f with loss function J ;
Input: Perturbation size ϵ; maximum iterations T ; decay factor µ; look-ahead parameter
σ; number of random erasure copies m; random erasure probability p.

Output: An adversarial example xadv

1: α = ϵ/T

2: g0 = 0;xadv
0 = x

3: for t = 0 to T − 1 do
4: Compute xem

t = xadv
t + α · σ · gt

5: g = 0

6: for i = 0 to m− 1 do
7: Compute gradient ∇xJ(REi(x

em
t ; p), y; θ)

8: Update g = g +∇xJ(REi(x
em
t ; p), y; θ)

9: Average momentum as g = g
m

10: Update gt+1 as gt+1 = µ · gt + g
∥g∥1

11: Update xadv
t+1 = xadv

t + α · sign(gt+1)

12: return xadv = xadv
T

Source model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens1

Inc-v3

MI-FGSM 100.0* 43.6 42.4 35.7 13.1 12.8 6.2
NI-FGSM 100.0* 51.7 50.3 41.3 13.5 13.2 6.0
EM-FGSM 100.0* 55.0 52.7 44.6 11.4 11.5 5.5

Inc-v4

MI-FGSM 56.3 99.7* 46.6 41.0 16.3 14.8 7.5
NI-FGSM 63.1 100.0* 51.8 45.8 15.4 13.6 6.7
EM-FGSM 66.9 100.0* 54.4 47.6 14.7 12.4 6.8

IncRes-v2

MI-FGSM 60.7 51.1 97.9* 46.8 21.2 16.0 11.9
NI-FGSM 62.8 54.7 99.1* 46.0 20.0 15.1 9.6
EM-FGSM 65.2 56.2 99.2* 48.7 18.6 13.1 7.8

Res-101

MI-FGSM 58.1 51.6 50.5 99.3* 23.9 21.5 12.7
NI-FGSM 65.6 58.3 57.0 99.4* 24.5 21.4 11.7
EM-FGSM 65.7 60.9 61.1 99.3* 20.8 17.6 10.0

Table 1: The attack success rates (ASR) (%) on seven target models in the single-source-
model setting, using EM alone. The AE are generated using a single source model Inc-v3,
Inc-v4, IncRes-v2, or Res-101. ‘*’ indicates white-box attack.

images from each of the 1,000 categories of the ILSVRC 2012 validation dataset, and thus
contains 1,000 good images with each of the size 299× 299× 3.

Models to attack. We first consider four widely used state-of-the-art DNNs, namely
Inception-v3 (Inc-v3) [30], Inception-v4 (Inc-v4) [29], Inception-Resnet-v2 (IncRes-v2)
[29], and Resnet-v2-101 (Res-101) [13]. In addition, to increase the difficulty level, we
also include three adversarially trained DNNs (and thus are more robust to AE), namely
Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens1 [33]. The first two models are Inc-v3 trained on
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Source model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens1

Inc-v3

DIM 99.0* 64.3 60.9 53.2 19.9 18.3 9.3
TIM 100.0* 48.8 43.6 39.5 24.8 21.3 13.2
SIM 100.0* 69.4 67.3 62.7 32.5 30.7 17.3
RE 100.0* 71.1 68.7 64.3 33.1 31.6 19.0

Inc-v4

DIM 72.9 97.4* 65.1 56.5 20.2 21.1 11.6
TIM 58.6 99.6* 46.5 42.3 26.2 23.4 17.2
SIM 80.6 99.6* 74.2 68.8 47.8 44.8 29.1
RE 82.3 99.8* 76.3 71.5 49.6 45.9 31.4

IncRes-v2

DIM 70.1 63.4 93.5* 58.7 30.9 23.9 17.7
TIM 62.2 55.4 97.4* 50.5 32.8 27.6 23.3
SIM 84.7 81.1 99.0* 76.4 56.3 48.3 42.8
RE 86.2 83.3 99.4* 78.7 59.1 50.6 46.2

Res-101

DIM 75.8 69.5 70.0 98.0* 35.7 31.6 19.9
TIM 59.3 52.1 51.8 99.3* 35.4 31.3 23.1
SIM 75.2 68.9 69.0 99.7* 43.7 38.5 26.3
RE 78.2 71.5 72.8 99.8* 45.2 39.8 28.7

Table 2: The attack success rates (ASR) (%) on seven target models in the single-source-
model setting, using RE alone. The AE are generated using a single source model Inc-v3,
Inc-v4, IncRes-v2, or Res-101. ‘*’ indicates white-box attack.

AE generated from an ensemble of 3 and 4 other pretrained DNNs, respectively, and the
last is IncRes-v2 trained on AE generated from a single pretrained DNN (it is still called
an “ensemble” in [33] so we have adopted the same naming convention).

Defenses to attack. To further increase the difficulty level, we also consider defense
mechanisms in our evaluation. As pointed out by [6], many existing attacks underperform
or even fail when target models are armed with defense mechanisms. Therefore, we select
nine state-of-the-art advanced defenses: the top-3 winners in the NeurIPS defense strategy
competition and 6 recently proposed defense methods. The first group consists of HGD
(rank-1) [19], R&P (rank-2) [39], and NIPS-r3 (rank-3), and the second group consits of
Bit-Red [41], JPEG [11], FD [23], ComDefend [14], RS [6] and NRP [25]. These 9 defense
methods have been integrated into their respective DNNs.

Baseline AE-generation methods. We compare our method with five recently pro-
posed attack methods, namely MI-FGSM [7], NI-FGSM [20], Diverse Inputs Method
(DIM) [40], Translation-Invariant attack Method (TIM) [8], and Scale-Invariant attack
Method (SIM) [20]. The first two are momentum-based attacks and the other three are
image-transformation based attacks.

Versatile as a “plug-in”. As mentioned in 1, our method can be applied to any gradient-
based attack method to form a new, stronger attack. We demonstrate this by integrating our
method with DIM, TIM, and SIM, respectively, as well as all of them three combined
together, to obtain two more attacks and include them in our evaluation as well.

Attack setup. We normalize image pixel values in [−1, 1], and set the number of iter-
ations T = 10, the maximum perturbation ϵ = 16/255 as in [7]. For parameters related
to EM, we set the decay factor µ = 1 following [7] and the look-ahead parameter σ = 2

as indicated by our ablation study. For parameters related to RE, we set sh = 0.4 and
re = 0.3 following [43], the number of erasure copies m = 5 and probability p = 0.5. We
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens1

Inc-v3
DIM 99.0* 64.3 60.9 53.2 19.9 18.3 9.3

EM-RE-DIM 99.6* 71.5 69.7 62.8 30.2 30.0 19.4

Inc-v4
DIM 72.9 97.4* 65.1 56.5 20.2 21.1 11.6

EM-RE-DIM 81.1 98.6* 75.0 64.2 28.9 30.1 18.6

IncRes-v2
DIM 70.1 63.4 93.5* 58.7 30.9 23.9 17.7

EM-RE-DIM 78.9 72.1 98.9* 65.4 37.9 31.5 25.6

Res-101
DIM 75.8 69.5 70.0 98.0* 35.7 31.6 19.9

EM-RE-DIM 82.6 76.8 77.4 99.3* 44.2 37.6 27.7

(a) Comparison with DIM

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens1

Inc-v3
TIM 100.0* 48.8 43.6 39.5 24.8 21.3 13.2

EM-RE-TIM 100.0* 56.9 51.2 46.5 31.1 28.5 25.9

Inc-v4
TIM 58.6 99.6* 46.5 42.3 26.2 23.4 17.2

EM-RE-TIM 66.8 99.9* 56.8 50.9 35.6 32.4 19.5

IncRes-v2
TIM 62.2 55.4 97.4* 50.5 32.8 27.6 23.3

EM-RE-TIM 70.7 64.8 98.9* 58.9 40.6 35.9 31.6

Res-101
TIM 59.3 52.1 51.8 99.3* 35.4 31.3 23.1

EM-RE-TIM 66.9 61.3 59.9 99.8* 41.9 39.6 30.9

(b) Comparison with TIM

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens1

Inc-v3
SIM 100.0* 69.4 67.3 62.7 32.5 30.7 17.3

EM-RE-SIM 100.0* 77.0 75.9 69.1 39.5 39.3 20.4

Inc-v4
SIM 80.6 99.6* 74.2 68.8 47.8 44.8 29.1

EM-RE-SIM 86.9 99.8* 80.3 76.0 56.1 52.6 38.9

IncRes-v2
SIM 84.7 81.1 99.0* 76.4 56.3 48.3 42.8

EM-RE-SIM 88.6 86.9 99.7* 82.1 64.3 56.2 51.6

Res-101
SIM 75.2 68.9 69.0 99.7* 43.7 38.5 26.3

EM-RE-SIM 84.9 75.9 76.9 99.8* 52.6 49.3 35.2

(c) Comparison with SIM

Table 3: ASR (%) on seven target models in the single-source-model setting, using both
EM and RE. ‘*’ indicates white-box attack.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens1
MI-FGSM 99.9* 98.2* 95.3* 99.9* 39.4 35.3 24.2
NI-FGSM 99.8* 99.8* 98.9* 99.8* 41.0 33.5 23.1
EM-FGSM 99.9* 99.8* 98.4* 99.9* 43.6 36.1 25.9

Table 4: ASR (%) on seven target models in the ensemble-source-model setting, using
EM alone. The source model is the ensemble of {Inc-v3, Inc-v4, IncRes-v2, Res-101}. ‘*’
indicates white-box attack.

use attack success rate (ASR) as our evaluation metric, which is the misclassification rate
of a classifier when test samples are AE (we have verified that all the benign images are
classified correctly in all the cases).
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5.2. Experimental Results

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens1
DIM 99.4* 97.4* 94.9* 99.8* 58.1 51.1 34.9

EM-RE-DIM 99.7* 99.1* 97.5* 99.8* 64.3 59.7 41.6
TIM 99.7* 98.9* 97.7* 99.9* 62.2 56.8 48.0

EM-RE-TIM 99.9* 99.3* 98.9* 100.0* 68.9 64.1 56.4
SIM 99.7* 99.0* 97.6* 100.0* 78.8 73.9 59.5

EM-RE-SIM 99.8* 99.3* 98.4* 100.0* 84.3 79.5 66.8
Composite 99.6* 98.9* 97.8* 99.7* 91.1 90.3 86.8

EM-RE-Composite 99.8* 99.3* 98.4* 99.8* 92.3 91.6 88.6

Table 5: ASR (%) on seven target models in the ensemble-source-model setting, using
both EM and RE. The source model is the ensemble of {Inc-v3, Inc-v4, IncRes-v2, Res-
101}. Composite model is the combination of DIM, TIM, and SIM. ‘*’ indicates white-box
attack.

5.2.1. Single source model

In this section, we evaluate the case that AE are trained on a single source model and then
used to attack multiple target models. We test four source models: Inc-v3, Inv-v4, IncRes-
v2, and Res-101, and the target models are these four as well as the three ensemble models,
i.e., Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens1.

Using EM alone (without RE). We first evaluate the EM approach only, without us-
ing RE. The results are presented in Table 1. First, under white-box attacks (source model
is also the target model), all the methods achieve close to 100% ASR as expected. These
mean that, although our method focuses on improving black-box performance (due to trans-
ferability), we do not sacrifice any white-box performance either. Second, let us look at
black-box attacks (target model is different from the source model), which are more im-
portant since they particularly reflect the transferability of AE. We see that EM achieves
the higher ASR in about 60% of the cases while MI-FGSM and NI-FGSM perform the
best in about 30% and 10% of the cases, respectively. Note that we have not activated RE
yet. Taking a closer look, one can observe that the cases where our proposed EM method
outperforms MI-FGSM and NI-FGSM are normally trained models, and the cases in which
it does not (but still keeps a comparable performance) are those three adversarially trained
models. The reason behind this is that, for normally trained models, EM achieves better op-
timum in the constrained iterative steps and hence demonstrates better transferability; but
on the other hand, the three ensemble adversarially trained models, i.e., Inc-v3ens3, Inc-
v3ens4 and IncRes-v2ens1, augmented their training data with AE crafted on other static
pre-trained models, and hence were trained to resist transferable AE, making black-box
attacks ineffective. Therefore, to achieve higher ASE against such adversarially trained
models, we need to increase the diversity of perturbations in AE, which precisely moti-
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vated our introduction of our second technique, Ransom Erasure (RE). By combining with
RE, our method achieves much higher ASR against ensemble adversarially trained models,
as shown later.

To offer a visual intuition, we also give some example AE images generated by all these
methods, in Fig. 3. It shows that all the adversarial images are very similar to the original
raw image as perceived by human eyes.

Using RE alone (without EM). We then evaluate the RE approach only, without using
EM. The results are presented in Table 2. The results indicate that in all the cases our
proposed RE consistently outperforms DIM, TIM and SIM by a large margin, which means
RE yields higher transferablity on all the black-box models while maintaining high attack
success rates on the white-box setting. For instance, if we craft adversarial examples on
IncRes-v2 model where our white-box attack achieves 99.4% success rate, RE yields 78.7%
ASR on Res-101 which is a black-box setting; in comparison, TIM only achieves an ASR
of 97.4% and 50.5%, respectively, in the same two settings. This set of results validate the
effectiveness of our proposed RE method.

Raw Image MI-FGSM NI-FGSM EM-FGSM

Fig. 3: Adversarial images crafted by MI-FGSM [7], NI-FGSM [20] and our EM approach
on the Inc-v3 model [30] with the maximum perturbation ϵ = 16/255.

Using both EM and RE. Next, we add both EM and RE into the evaluation and present
the results in Table 3. To demonstrate that our proposed method is versatile in that it can
be applied to any gradient-based attacks to form new attacks, we apply it to DIM [40],
TIM [8] and SIM [20]. Table 3 shows that our method constantly achieves the highest ASR
in all the 4 × 7 × 3 = 84 cases, including the 12 white-box and the 72 black-box attack
settings. The wining margin is remarkable too, mostly between 20-50%. This set of results
demonstrate the superior transferability of our proposed EM-RE method.

5.2.2. Ensemble source model

Crafting AE on an ensemble of models has been shown to be effective to improve AE
transferability [7,22]. In this section, we evaluate the performance over an ensemble model
of four: Inc-v3, Inc-v4, IncRes-v2 and Res-101, by averaging their logit outputs when
calculating the gradients [7]. The results of using EM alone are summarized in Table 4. We
observe that EM achieves the highest ASR in all the black-box attack scenarios.
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(b) Impact of sh on ASR.

Fig. 4: Ablation study on σ (look-ahead horizon) and sh (max. erasure area). The source
model is Inc-v3 and the 6 target models under attack are indicated by the legend.

Source Attack HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS NRP Average

Inc-v3

MI-Composite 56.6 44.9 52.5 36.2 77.3 60.0 80.1 40.3 29.3 53.0
NI-Composite 50.4 39.4 47.4 34.3 76.0 58.6 77.7 36.9 24.8 49.5

EM-RE-Composite 59.6 48.3 55.9 39.6 81.1 65.5 82.3 45.4 33.1 56.8

Ensemble

MI-Composite 91.0 87.7 89.0 75.9 94.2 88.8 95.1 68.1 76.1 85.1
NI-Composite 91.3 85.6 89.0 72.3 95.9 89.5 95.4 63.2 69.5 83.5

EM-RE-Composite 92.9 89.6 91.8 79.3 96.9 92.4 96.4 74.3 80.1 88.2

Table 6: ASR (%) on 9 advanced defense mechanisms. Composite refers to the combination
of DIM, TIM, and SIM.

Next, we apply both EM and RE to DIM, TIM and SIM, respectively, to form three
new models. In addition, we create a new attack Composite by combining DIM, TIM and
SIM together which forms the strongest baseline. On top of that, we apply EM and RE to
Composite to obtain an enhanced attack using our method. We evaluate these 8 attacks and
report their performance in Table 5. It shows that our proposed method again yields the
best ASR in all the white-box and black-box attacks (4 × 7 cases), outperforming all the
baselines by up to 17.5%.

5.2.3. Attacking Advanced Defense Mechanisms

Although our proposed method exhibits superior performance on both regularly and ad-
versarially trained deep models, there is still a question left as to whether it will perform
well against models that are protected by more sophisticated mechanisms. As pointed out
by [6], many existing attacks underperform or even fail when target models have additional
defense mechanisms. Motivated by this, we select 9 advanced defense mechanisms to at-
tack, as described in our experiment setup, for the purpose of a more thorough evaluation.

We use Inc-v3 and the ensemble of {Inc-v3, Inc-v4, IncRes-v2, Res-101} as the source
models to train AE, and attack the above 9 advanced defense mechanisms. We further
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create more baseline attacks by combining MI and NI respectively with the Composite (MI
and NI do have this similar “plug-in” kind of advantage as our method, but most other
methods in the literature do not have). The results are given in Table 6. In this case, there
is no white-box attack and all attacks are black-box. We observe that our proposed EM-RE
approach is the best performer in all the scenarios, with a substantial winning margin, up
to 25.4%.

5.2.4. Ablation Study on Hyper-parameters

We also conduct ablation experiments to study the impact of the hyper-parameters on the
performance of our approach. Two key parameters are σ which determines the look-ahead
horizon in EM, and sh which determines the maximum erasure area in RE. In this ablation
study, the source model is chosen to be Inc-v3 and the generated AE are then used to attack
the other six models, and hence all the attacks are black-box.

The results as shown in Fig. 4, where we vary σ from 0.0 to 4.0 with step size 1.0, and
vary sh from 0.1 to 0.5 with step size 0.1. The perturbation ϵ = 16/255 and the number
of iterations T = 10. The results indicate that the best ASR is achieved at σ = 2.0, yet
is insensitive to the choice of sh (which is a good thing since it implies robustness of our
erasure). Therefore, we have chosen σ = 2.0 and sh = 0.4 in our experiments.

6. Conclusion

In this paper, we propose a new black-box approach of crafting transferable adversarial
examples (AE) to attack deep learning based image classifiers. As such deep models are
increasingly being deployed in autonomous driving, medical diagnosis, and many other
computer vision applications, studying this topic plays an important role in deepening our
understanding of AI security. Our proposed method consists of a gradient-based elastic
momentum (EM) technique, and a random erasure (RE) data augmentation technique. EM
introduces a flexible look-ahead horizon to estimate future momentum during AE com-
putation, which speeds up the process of finding local optima and thus prevents hitting
the overfitting region. RE creates an ensemble of transformed images that increases the
diversity of perturbations and helps stablize gradient updates, which optimize the adver-
sarial perturbations. We have performed extensive experiments to evaluate our proposed
EM-RE method by attacking 7 modern deep learning classifiers and 9 advanced defense
mechanisms, in comparison with 5 recently proposed baseline methods (and an additional
Composite method). The results demonstrate superior transferability of the adversarial ex-
amples generated by our proposed method for black-box attacks.
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