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Abstract. Recently, station-free Bike sharing as an environment-friendly
transportation alternative has received wide adoption in many cities due
to its flexibility of allowing bike parking at anywhere. How to incentivize
users to park bikes at desired locations that match bike demands - a
problem which we refer to as a rebalancing problem - has emerged as
a new and interesting challenge. In this paper, we propose a solution
under a crowdsourcing framework where users report their original des-
tinations and the bike sharing platform assigns proper relocation tasks
to them. We first prove two impossibility results: (1) finding an optimal
solution to the bike rebalancing problem is NP-hard, and (2) there is no
approximate mechanism with bounded approximation ratio that is both
truthful and budget-feasible. Therefore, we design a two-stage heuristic
mechanism which selects an independent set of locations in the first stage
and allocates tasks to users in the second stage. We show analytically
that the mechanism satisfies location truthfulness, budget feasibility and
individual rationality. In addition, extensive experiments are conducted
to demonstrate the effectiveness of our mechanism. To the best of our
knowledge, we are the first to address 2-D location truthfulness in the
perspective of mechanism design.

Keywords: Location truthfulness · Bike sharing · Mechanism design

1 Introduction

Bike sharing as a convenient, health-promoting, and eco-friendly form of
transportation, has been widely adopted in more than 1000 cities across the
world [1]. It substantially contributes to the reduction of traffic congestion and
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air pollution. In recent years, a new type of bike sharing, called station-free bike
sharing, has been deployed in many cities1 and attracted increasing attention.

Compared with traditional bike sharing, users of a station-free bike sharing
system can pick up and drop off bikes at any valid locations rather than at desig-
nated stations. This new system brings new challenges. The foremost challenge
is a more serious imbalance of bike distribution as compared to the traditional
bike sharing, due to the much less restriction on parking locations and the asym-
metry of bike demand. For instance, suppose a hospital is short of bikes while a
nearby shopping mall has many redundant bikes. Without a proper rebalancing
mechanism, subsequent shoppers would still go to the shopping mall to park for
convenience, leading to a more and more serious imbalance.

To tackle this problem, a plausible solution is to design an incentive mecha-
nism to motivate users to park their bikes in desirable locations. However, there
are two challenges. First, there is a limited budget for the bike sharing platform
to use as the incentive, and hence it should be used to the maximal efficiency.
Second, there is a continuum of possible parking locations and a large number
of bikes, making computation tractability a practical issue.

This paper addresses the bike rebalancing problem and our main contribu-
tions are as follows:

– We characterize the imbalance between bike demand and supply using the
Kullback-Leibler (KL) divergence, and formulate an optimization problem
under a crowdsourcing framework.

– Pertaining to this model, we prove two impossibility results: (1) the opti-
mization problem is NP-hard, and the traditional VCG mechanism cannot
be applied; (2) there is no truthful and budget-feasible mechanism for this
problem that can achieve a bounded approximation ratio.

– Thus, we propose a two-stage heuristic mechanism as an alternative solution,
which achieves both location truthfulness, budget feasibility, and individual
rationality. To the best of our knowledge, we are the first to study the 2-D
location truthfulness in the perspective of mechanism design.

– We conduct experiments using real-world data, and demonstrate the effec-
tiveness of our mechanism as a viable solution.

2 Related Work

Optimizing bike sharing systems has attracted much research effort [2–4]. For
station-based bike sharing, Singla et al. [5] proposed a crowdsourcing mechanism
that incentivizes users in the bike repositioning process, where users report their
destination stations and the system provides an offer that consists of recommend-
ed stations and corresponding incentives. Ghosh et al. [1] generated repositioning
tasks with trailers using an optimization method. For station-free bike sharing, a
deep reinforcement learning algorithm is proposed in [6]. In that work, the plat-
form learns to determine the payment based on their behaviors. It takes spatial

1 https://mobike.com/cn/about/



Achieving Location Truthfulness in Rebalancing Bike Sharing 3

and temporal features into consideration, but the proposed mechanism does not
guarantee truthfulness. In contrast, our work achieves truthfulness and budget
feasibility simultaneously.

In the field of crowdsourcing [7] and crowdsensing [8], a large body of works
study the allocation and payment of spatial tasks [9, 10], and especially some
papers take the quality into consideration [8, 11] which are similar to our work
in a sense. In these works, users report their cost for tasks directly, but in reality,
users may not know their exact cost. In our work, users only need to report their
respective destinations, which would be a more practical approach.

3 The Model

In the bike rebalancing problem as illustrated in Fig. 1, there is a set of n users
N = {1, 2, 3, · · · , n}, and a set of m discrete locations M = {1, 2, 3, · · · ,m}. We
assumed that the demand distribution D(l) at all the locations l ∈ M and the
current bike distribution A0 are known to the system (e.g., through the mobile
apps and GPS), where A0 means the set of the existing parked bikes and their
respective locations. In this model, each user i who uses a bike needs to indicate
or report her intended destination di on the map. The destinations of users are
continuous in the 2-D area, but locations of tasks M are discrete points, each of
which indexes a grid (see Fig. 1). We focus on bikes that are being in use and
have not been parked (the parked ones are accounted for by A0).

Fig. 1. Bike rebalancing problem: existing (parked) bikes, in-use bikes (to be parked),
and locations (grids) for parking tasks.

As explained earlier, serious imbalance of bike distribution can happen if all
the users park their bikes exactly at their destinations. Hence, the bike sharing
platform would like to allocate a system-desired location li (rather than di) to
user i for her to park her bike in order to match demand of bikes. In return, the
platform offers an incentive pi to user i if she takes that task. We employ an
crowdsourcing framework as follows. Each location l ∈M corresponds to a task
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and each user i ∈ N reports her destination as her bid. The distance between
any two points x and y is denoted by Hxy and can be retrieved by the platform.
The cost of user i for parking her bike at location li rather than her intended
destination di is denoted by Ci or Cdili = c ∗Hdili , where the constant c is the
unit travel cost. Hence, the utility of user i who takes a task of location li is
ui = pi − Ci. In addition, we assume that a user does not accept a task whose
location is outside range h of di, where h is a constant.

The platform has a budget B, within which it aims to design a mechanism
to allocate desirable locations to users for balancing the demand and supply of
bikes. The mechanism should satisfy the following properties:

– Location truthfulness: the utility of each user bidding truthfully should be no
less than the utility of misreporting, i.e., ui(di, d−i) ≥ ui(d′i, d−i),∀d′i 6= di.

– Budget feasibility : the payment to all users should not exceed the budget
limitation,

∑
i pi ≤ B.

– Computational efficiency : the algorithm should terminate in polynomial
time.

– Individual rationality : the utility of any user should be nonnegative, i.e.,
pi ≥ Ci.

3.1 Problem Formulation

We characterize the imbalance of bike distribution using KL divergence,
which measures the expected logarithmic difference between two probability dis-
tribution X and Y , as defined by

KL(X||Y ) =
∑
i

X(i)log
X(i)

Y (i)
.

The smaller the KL divergence is, the smaller the gap between X and Y is, and
KL(X||Y ) = 0 means that X and Y are identical probability distributions. In

our case, we substitute Q(l) = D(l)∑
l′∈M D(l′) for X(i) (demand), and |A(l)|

|A| for Y (i)

(supply), where A is the set of all the parked bikes including existing bikes and
bikes with allocated tasks, and A(l) is defined the same way but for location l
only. We assume |A0(l)| > 0 for all locations2 to avoid singularity.

Thus, the KL-divergence is

KL(A) =
∑
l

Q(l)log
Q(l)|A|
|A(l)|

(1)

where we omit Q on the left hand side for notational convenience. Now, let Ai
denote the set of all the parked bikes before user i parks her bike. If user i takes
the task of parking a bike at location li, then we have

KL(Ai ∪ (i, li)) =
∑
l 6=li

Q(l)log
Q(l)(|Ai|+ 1)

|Ai(l)|
+Q(li)log

Q(li)(|Ai|+ 1)

|Ai(li)|+ 1
(2)

2 This is generally ensured as long as a grid is not too small.
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In this work, our goal is to minimize the imbalance of bike distribution,
namely the KL divergence, so we define the contribution of user i as the difference
between KL(Ai) and KL(Ai ∪ (i, li)). Based on equation (1) and (2), we have

ξi = KL(Ai)−KL(Ai ∪ (i, li))

= log
|Ai|
|Ai|+ 1

+Q(li)log
|Ai(li)|+ 1

|Ai(li)|
.

Denote

ξ1i = log
|Ai|
|Ai|+ 1

, ξ2i = Q(li)log
|Ai(li)|+ 1

|Ai(li)|
.

We can observe that the sum of the first item only depends on the total number
of users |N |. Since our objective is to minimize the KL divergence, which is the
total contribution of all the users, we can omit the first term ξ1i because the sum
of ξ1i is a constant. Thus, we let ξi = ξ2i in the following. Moreover, note that
the sequence of task allocation influences users’ contribution, because Ai(li) and
Ai are evolving when we sequentially calculate each user’s contribution.

Based on the above, the bike rebalancing problem can be formulated as:

max ξ =
∑
i∈U ξi (3)

s.t.
∑
i∈U pi ≤ B

pi ≥ Cdili ∀i ∈ U

where U is the subset of users that are chosen to park in particular locations
(namely, to perform parking tasks), pi is the payment given to user i, which
should be no less than her cost of performing the task. For users who are not
selected (i.e., N \ U), they can just park at their intended destinations and the
system does not allocate tasks to them.

3.2 NP-hardness

We prove that the problem (3) is NP-hard.

Theorem 1 The bike rebalancing problem is NP-hard.

Proof. We prove the decision version of the bike rebalancing problem is NP-hard.
In the decision version, the question is whether there exists a subset of items U
that satisfies both

∑
i∈U ξi ≥ K and

∑
i∈U pi ≤ B for a given constant K.

We use reduction to NP-hardness from the 0-1 knapsack problem which is a
classic NP-complete problem, and is defined as follows.

Definition 1 (An Instance of 0-1 Knapsack Problem) Given a set of n
items, each with a positive weight wi and a positive value vi. Given a maxi-
mum weight capacity W and a constant K, the question is whether there exists
a subset of items U that satisfies

∑
i∈U vi ≥ K and

∑
i∈U wi ≤W .
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We simplify the decision version of our problem to an instance where the
acceptable range h is small enough such that there is only one choice of l̂i for
each user i and all the l̂i’s are non-overlapping. Thus, the quantities vi, wi,
and W in the 0-1 knapsack problem correspond to ξi, pi, and B in our case,
respectively. Hence, the solution to the instance of the 0-1 knapsack problem
is exactly the solution to the instance of our problem. In addition, the above
reduction ends in polynomial time, which completes the proof. ut

4 Impossibility of Approximate Mechanisms

Theorem 1 shows that VCG mechanism is unusable due to the exponential
time complexity of finding an optimal solution. One possible direction is to make
use of the available results in [14,15] where the authors proposed budget-feasible
approximate mechanisms for submodular functions which are defined as follows:

Definition 2 [17] A function V : 2[n] → R+ is submodular if V (S ∪ {i}) −
V (S) ≥ V (T ∪ {i})− V (T ),∀S ⊆ T .

In short, it means that the marginal contribution of a user decreases when the
chosen user set becomes larger. However, our problem does not satisfy submodu-
larity: when the set of chosen users expands from S to T , the (additional) user i’s
marginal contribution may increase because the user i may have multiple choices
of tasks and the task allocated to her (and hence her contribution) may change
when S changes to T . Therefore, the mechanisms introduced in [14, 15] cannot
be directly used. In fact, we prove that there does not exist an approximate
mechanism with bounded approximation ratio for our problem.

Fig. 2. An example showing impossibility where circles denote users and boxes denote
tasks.

Theorem 2 There is no approximate mechanism with a bounded approximation
ratio that is truthful, budget-feasible and individually rational simultaneously for
the bike rebalancing problem.
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Proof. Let us consider an example shown in Fig. 2, where the bid of location has
been easily converted to the bid of cost by calculating the distance. The bidding
profile is x = {(B+ε,∞), (ε, B), (∞, B+ε)}, where ε can be any positive number
less than B. ξa and ξb are the contribution of fulfilling task a and b respectively,
and ξb

ξa
can be arbitrarily large. In the optimal solution, location b should be

allocated to user 2, leading to a total contribution of ξb. We now show that
any truthful, budget feasible and individually rational mechanism can achieve
at most a total contribution of ξa.

Assume for the purpose of contradiction that there exists a mechanism f
that satisfies these properties and guarantees a bounded approximation ratio.
Let’s consider the case of bidding profile y = {(B+ ε,∞), (ε, B+ ε), (∞, B+ ε)},
where user 2 declares B + ε instead for location b. In this case, the optimal
solution will allocate location a to user 2, so does the mechanism f . The reason
is that (1) if f allocates location b to user 2, the cost of user 2 is above B,
so it is neither budget feasible nor individually rational, and (2) if none of the
locations a and b is allocated to user 2, then the total contribution is 0, and thus
f can not guarantee a bounded approximation ratio. Given this allocation, to
achieve truthfulness, the payment to user 2 for parking at location a has to be B
because, otherwise, user 2 can misreport B for location a. Now, we can compare
the bidding profiles x and y. In the case of y, the utility of user 2 is B − ε. In
the case of x, if mechanism f allocates location b to user 2, the utility of user
2 is at most 0, so she has incentive to misreport B + ε for location b to change
the bidding profile into y to get better utility. Therefore, to ensure truthfulness,
mechanism f has two choices in the case of x: allocating location a to user 2 or
allocating nothing. In either case, the approximation ratio of total contribution
is OPT∑

l∈M ξi
≥ ξb

ξa
which can be arbitrarily large. Therefore, the mechanism cannot

guarantee bounded approximation ratio, which constitutes the contradiction.
ut

5 A Two-stage Incentive Mechanism

Due to the impossibility result of approximate mechanisms, we propose a
heuristic mechanism in this section for the bike rebalancing problem.

The main idea is to convert the problem into a submodular problem and then
employ techniques for submodular functions. We choose some representative lo-
cations that are not overlapping, and restrict each user to choose one of these
locations or none (not participating). This way, the function of total contribu-
tion becomes a submodular function. Note that this method is not impractical
because in the real world there are typically some sparse locations that are short
of bikes, such as subway stations or residential areas.

However, there are still two challenges in designing a heuristic mechanism:
(1) the selection of locations is a maximum weighted independent set problem,
which is an NP-complete problem [16], and (2) allocating tasks to users to achieve
truthfulness and budget feasibility simultaneously is a difficult problem.
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Algorithm 1: The Two-stage Mechanism

Input: N , M , A0, Q = {Q(1), Q(2), · · · , Q(m)}, set of bids d = {d1, d2, · · · dn}, and
the conflict network G = (V,E,W ).

Output: set of winning allocation (i, li) ∈ U , and payment pi, for winning user i.
1: Ul ← ∅, L← ∅, TC ← 0, Nl ← 0;
2: for l ∈ V , i ∈ N do
3: if Hdil ≤ h then
4: Nl ← Nl ∪ i;
5: end if
6: end for
7: for l ∈ V do
8: ξl(A0) = Q(l) log |A0(l)|+1

|A0(l)|
;

9: end for
10: Sort locations based on the contribution ξl(A0) into a list M ′ in descending order;
11: while M ′ 6= ∅ do
12: Let l′ be the head of the list, and Gl′ be the neighbor set of l′;
13: L← L ∪ {l′},M ′ ←M ′\{Gl′ ∪ l′};
14: end while
15: for l ∈ L do
16: Bl = |Nl|·B∑

l′∈L |Nl′ |
;

17: Sort users in set Nl into a list N ′l based on Cdil in nondecreasing order, and let
j be the head of N ′l ;

18: while Cdj l ≤
Bl
|Ul|+1

do

19: Ul ← Ul ∪ (j, l), N ′l ← N ′l\i;
20: Let j be the new head of N ′l ;
21: end while
22: for (i, l) ∈ Ul do
23: pi = min{Cdj l,

Bl
|Ul|
};

24: end for
25: end for

We propose a two-stage incentive mechanism. In the first stage, we construct
a conflict network among locations by adding an edge of two locations if the
distance between them is no more than 2h, and we assign the weight of each
location to be the contribution of the first user who parks at the location. Then,
we use a greedy method to find the maximum weighted independent set of loca-
tions. In the second stage, the budget is divided for selected locations, and users
are chosen for each location using the critical price mechanism. The complete
procedure is presented in Algorithm 1.

In Algorithm 1, line 2-6 is to determine the candidates that are adjacent
to each location. Line 7-14 determines a maximum weighted independent set of
locations and proportionally divides the budget to each location based on the
number of users. Line 15-25 is to find the optimal set of winners in a greedy
manner for each location, where the critical price min{Cdj l, Bl

|Ul|} is used as the

payment for the first unselected user j.
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In the following, we prove four important properties of our proposed mech-
anism: truthfulness, individual rationality, budget feasibility and computation
efficiency. For proving truthfulness, we give a definition of symmetric modular
function and a lemma presented below.

Definition 3 [17] A function V : 2[n] → R+ is symmetric submodular if there

exist r1 ≥ · · · ≥ rn ≥ 0, such that V (S) =
∑|s|
i=1 ri.

Intuitively, a function is symmetric if the value of the function is only deter-
mined by the cardinality of the set, and it is submodular if the marginal value
is monotonously non-increasing.

Lemma 1 [14] For a symmetric submodular function with a given budget, the
above mechanism of determining winners (line 17-24) is truthful.

Theorem 3 The two-stage incentive mechanism is location truthful.

Proof. In the first stage, it’s obvious that users cannot manipulate the selected
locations because the sorting of locations only relies on the condition of locations
rather than the bids of users. So, let user i be a candidate of location l, if she
misreports her destination d′i 6= di, it must fall into one of following cases:

Case 1: Hd′il
> h. In this case, user i either becomes a candidate of another

location l′ 6= l, or fails to be a candidate. In the former scenario, based on
the non-overlapping characteristic between different selected locations, we have
Hdil′ > h, so it’s beyond the acceptable range of user i. In the latter scenario,
we easily have that user i’s utility ui(d

′
i, d−i) = 0 ≤ ui(di, d−i).

Case 2: Hd′il
≤ h and d′i 6= di. In this case, we use Lemma 1. Due to the

monotonicity of function log x+1
x , if Sl ⊆ Tl, we have

ξl(Sl ∪ {i})− ξl(Sl) = Q(l) log
|A0(l)|+ |Sl|+ 1

|A0(l)|+ |Sl|

≥ Q(l) log
|A0(l)|+ |Sl|+ |Tl\Sl|+ 1

|A0(l)|+ |Sl|+ |Tl\Sl|

= Q(l) log
|A0(l)|+ |Tl|+ 1

|A0(l)|
−Q(l) log

|A0(l)|+ |Tl|
|A0(l)|

= ξl(Tl ∪ {i})− ξl(Tl).

Moreover, the function of total contribution ξl = Q(l) log |A0(l)|+|Ul|
|A0(l)| depends on

cardinality only. Therefore, the contribution of a single location is a symmetric
submodular function, and by Lemma 1, the above mechanism is truthful. ut

Theorem 4 The two-stage incentive mechanism satisfies individual rationality.

Proof. For an unselected user i, her payment and cost are both zero, so the
utility ui = pi−Ci = 0. For a winning user i, by the line 18 in the algorithm, we
have Ci ≤ Bl

|Ul| , and by the nondecreasing order of N ′l , we can get Ci ≤ Cj , where

j is the first unselected user. Therefore, we have that ui = min{Cj , Bl

|Ul|} − Ci
≥ 0. ut
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Theorem 5 The algorithm of the two-stage incentive mechanism has a polynomial-
time computation complexity.

Proof. The complexity of allocating users to adjacent locations (line 3-7) is
O(|V | · |N |). The operation of sorting locations (line 10) is O(|V | · log |V |). The
computation complexity of determining winners for single location (line 17-24)
is O(|Nl| · log |Nl|), so for all selected locations, it’s at most O(|N | · log |N |). Since
we have |N | > log |V | and |V | > log |N | in reality, the overall complexity of the
two-stage mechanism is O(|V | · |N |). ut

Theorem 6 The two-stage incentive mechanism is budget feasible.

Proof. In the mechanism, the given budget is divided for each selected location,
so we only need to prove the mechanism for each single location is budget feasible.
For location l and the set of selected users Al, the price is min{Cdj l, Bl

|Ul|} where

j is the first unselected user, so we have∑
i∈N

pi =
∑
l∈L

min{Cdj l,
Bl
|Ul|
} · |Ul|

≤
∑
l∈L

Bl
|Ul|
· |Ul|

= B

which proves the budget feasibility. ut

6 Performance Evaluation

We evaluate the effectiveness of our proposed mechanism using a real-world
dataset from Mobike3, which is a popular bike sharing company in China. We
build a simulator that generates parking users and demand users based on the
dataset of Beijing city from 10th to 14th May 2017.

The parameter values are set as follows. The cost of unit distance for each
user is c = 1RMB/km, and the maximum acceptable range h = 2km. Unless
otherwise specified, the number of existing bikes is 4000, the number of parking
users is 1700, and the number of demand is 5000. We perform each experiment
for 30 times and present the average value.

Three mechanisms are compared: our proposed two-stage heuristic mecha-
nism (TSH), a randomized mechanism (RAN) and a randomized mechanism
with selected locations (RAN-SL). In RAN, one user is chosen randomly in each
round, and the platform picks all of nearby locations with higher demand than
her affiliated location, then randomly chooses one to allocate to the user and
pays her the maximum possible cost pi = c ∗ h for performing that task. RAN-
SL is similar to TSH in that it selects an independent set of locations the same

3 https://mobike.com/global/
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way as in our mechanism. However, the platform randomly chooses a location
and a candidate user for that location in each round, and the payment for each
task is also the maximum cost pi = c ∗ h.

We use successful service ratio (SSR) as the evaluation metric, which is de-
fined as the proportion of demand that is satisfied, formally,

SSR =

∑
l∈M min{D(l), |A0(l)|+ |Ul|}∑

l∈M D(l)
.
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60
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Fig. 3. Comparison on SSR with varying
budget.
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Fig. 4. The effect of the number of park-
ing users.

The comparison of the successful service ratio (SSR) with varying budgets is
illustrated in Fig. 3. We observe that SSR of all the three methods increases with
the increase of budget until a threshold value. This is because all the candidate
users have been selected and there is a remaining budget. Our method TSH
outperforms the other methods in general. In addition, we see that the threshold
of our method is about 2000 whereas the threshold of RAN and RAN-SL is about
3000, which indicates the budget-saving advantage of our mechanism.

7 Conclusion

In this paper, we have studied the bike rebalancing problem in station-free
bike sharing. We have proved two impossibility results for optimal and approxi-
mate mechanisms, respectively. Therefore, we have proposed a two-stage heuris-
tic mechanism as an alternative solution, and showed that it is effective and
outperforms other choices through our extensive experiments based on a real-
world dataset. In future work, we plan to explicitly incorporate the temporal
factor into an online model, and conduct pilot experiments in a real city.

References

1. Supriyo Ghosh and Pradeep Varakantham. Incentivizing the use of bike trailers
for dynamic repositioning in bike sharing systems. In Proceedings of the Twenty-



12 H. Lv et al.

Seventh International Conference on Automated Planning and Scheduling, ICAPS
2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017., pages 373–381, 2017.

2. Tal Raviv, Michal Tzur, and Iris A. Forma. Static repositioning in a bike-sharing
system: models and solution approaches. Euro Journal on Transportation and
Logistics, 2(3):187–229, 2013.

3. Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Stefano Novellani.
The bike sharing rebalancing problem: Mathematical formulations and benchmark
instances. Omega, 45(2):7–19, 2014.

4. Gilbert Laporte, Frederic Meunier, and Roberto Wolfler Calvo. Shared mobility
systems. 4OR, 13(4):341–360, 2015.

5. Adish Singla, Marco Santoni, Gábor Bartók, Pratik Mukerji, Moritz Meenen, and
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