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RESULTS

BACKGROUND & KEY TAKEAWAY

* Adversarial examples (AE) are created by adding human imperceptible

perturbations to benign inputs to induce misclassifications.

Adversarial transferability: AE created on surrogate models (source;
white-box) can also fool target models (black-box).

Objective: Improve adversarial transferability (more transferable AE).

Key Takeaway: 1) Instead of designing AE creation algorithms on a given

surrogate model (the vast majority of existing work), transform surrogate
models toward flatter and smoother loss landscape (characterized by
smaller local Lipschitz constant) and stronger adversarial robustness.

2) LRS acts as a “cushion”: existing AE creation algorithms can run on
LRS-transformed surrogates w/o any modification, yet attaining much
improved performance (i.e., generating AE that are more transferable).
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METHODS

* LRS-1: Lipschitz Regularization on the First Order of Loss Landscape
2
L(z,y) = l(z,y) + A [[Val(z,y)|5

* LRS-2: Lipschitz Regularization on the Second Order of Loss Landscape

L(z,y) =4(z,y) + A2 "Vié(x, y)HZ

* LRS-F: sum of the two regularization terms applied to the loss function

* In view of high-dimensional data, approximate using finite difference
method (FDM):
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Method ResNet-50*  VGG-19  ResNet-152  Inception v3  DenseNet  MobileNet
PGD (2018) 100.00% 39.22% 29.18% 15.60% 35.58% 37.90%
TIM (2019) 100.00% 44.98% 35.14% 22.21% 46.19% 42.67%
SIM (2020) 100.00% 53.30% 46.80% 27.04% 54.16% 52.54%

LinBP (2020) 100.00% 72.00% 58.62% 29.98% 63.70% 64.08%
Admix (2021) 100.00% 57.95% 45.82% 23.59% 52.00% 55.36%
TAIG (2022) 100.00% 54.32% 45.32% 28.52% 53.34% 55.18%
[LA++ (2022) 99.96% 74.94% 69.64% 41.56% 71.28% 71.84%
LRS-1 (ours) 100.00% 76.02% 72.36% 42.01% 71.23% 69.36%
LRS-2 (ours) 100.00% 78.24% 75.96% 46.14% 73.01% 73.45%
LRS-F (ours) 100.00% 80.64 % 78.21% 50.10% 75.19% 76.24%

Method SENet ResNeXt WRN PNASNet  MNASNet  Average
PGD (2018) 17.66% 26.18% 27.18% 12.80% 35.58% 27.69%
TIM (2019) 22.47% 32.11% 33.26% 21.09% 39.85% 34.00%
SIM (2020) 27.04% 41.28% 42.66% 21.74% 50.36% 41.69%

LinBP (2020) 41.02% 51.02% 54.16% 29.72% 62.18% 52.65%
Admix (2021) 30.28% 41.94% 42.78% 21.91% 52.32% 42.40%
TAIG (2022) 24.82% 38.36% 42.16% 17.20% 54.90% 41.41%
[LA++ (2022) 53.12% 65.92% 65.64% 44.56% 70.40% 62.89%
LRS-1 (ours) 54.27% 66.85% 67.21% 45.29% 72.03% 64.53%
LRS-2 (ours) 57.19% 69.48% 71.13% 48.39% 75.68% 67.57%
LRS-F (ours) 59.68 % 71.96 % 74.61 % 52.43 % 76.87 % 69.91 %

o vk s R I“ Algorithm -1 RS-1 (using PGD as an example base) Table 1. Attack success rates of transfer-based untargeted attacks on ImageNet using
Oorigl nal LRS-2 ResNet-50 as the surrogate model and PGD as the base attack method.
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